1. Stochastic Optimal Control of HVAC System for Energy-Efficient Buildings
- Author
-
Yu Yang, Costas J. Spanos, Guoqiang Hu, and School of Electrical and Electronic Engineering
- Subjects
Stochastic control ,Mathematical optimization ,Computer science ,business.industry ,Thermal comfort ,Systems and Control (eess.SY) ,Electrical Engineering and Systems Science - Systems and Control ,System dynamics ,Heating ,Model predictive control ,Control and Systems Engineering ,HVAC ,FOS: Electrical engineering, electronic engineering, information engineering ,Electrical and electronic engineering [Engineering] ,Relaxation (approximation) ,Markov decision process ,Electrical and Electronic Engineering ,Energy-Efficient ,business ,Efficient energy use - Abstract
The heating, ventilation and air-conditioning (HVAC) system accounts for substantial energy use in buildings, whereas a large group of occupants are still not actually feeling comfortable staying inside. This poses the issue of developing energy-efficient HVAC control, i.e., reduce energy use (cost) while simultaneously enhancing human comfort. This paper pursues the objective and studies the stochastic optimal HVAC control subject to uncertain thermal demand (i.e., the weather and occupancy etc). Particularly, we involve the elaborate predicted mean vote (PMV) thermal comfort model in the optimization. The problem is computationally challenging due to the non-linear and non-analytical constraints imposed by the system dynamics and PMV model. We make the following contributions to address it. First, we formulate the problem as a Markov decision process (MDP) which is a desirable modeling technique capable of handling the complexities. Second, we propose a gradient-based learning (GB-L) method for progressively learning a stochastic control policy off-line and store it for on-line execution. Third, we prove the learning method converge to the optimal policies theoretically, and its performance (i.e., energy cost, thermal comfort and on-line computation) for HVAC control via simulations. The comparisons with the existing model predictive control based relaxation (MPC-R) method which is assumed with accurate future information and supposed to provide the near-optimal bounds, show that though there exists some performance loss in energy cost reduction (i.e., 6.5%), the proposed method can enable efficient on-line implementation (less than 1 second) and provide high probability of thermal comfort under uncertainties., 11 pages, 10 figures
- Published
- 2022