1. Anatomy of continuous Mars SEIS and pressure data from unsupervised learning
- Author
-
S. Barkaoui, Grégory Sainton, Maarten V. de Hoop, Eléonore Stutzmann, Rudolf Widmer-Schnidrig, Philippe Lognonné, W. Bruce Banerdt, Aymeric Spiga, Taichi Kawamura, Randall Balestriero, Matthieu Plasman, John Clinton, Léonard Seydoux, Savas Ceylan, Francesco Civilini, John-Robert Scholz, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Rice University [Houston], Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), California Institute of Technology (CALTECH), and ANR-19-CE31-0008,MAGIS,MArs Geophysical InSight(2019)
- Subjects
Seismic investigations ,Seismic noise ,Computer science ,unsupervised classification ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Interior structure ,Machine learning ,computer.software_genre ,Continuous data ,Geochemistry and Petrology ,geodesy ,Clusterings ,Pressure drop ,Seismology ,Pressure data ,business.industry ,Heat transport ,Deep learning ,pressure gradient ,Mars Exploration Program ,Stable time ,Geophysics ,machine learning ,Unsupervised learning ,Artificial intelligence ,Micro-events ,business ,computer ,Quasi-periodicities - Abstract
The seismic noise recorded by the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) seismometer (Seismic Experiment for Interior Structure [SEIS]) has a strong daily quasi-periodicity and numerous transient microevents, associated mostly with an active Martian environment with wind bursts, pressure drops, in addition to thermally induced lander and instrument cracks. That noise is far from the Earth’s microseismic noise. Quantifying the importance of nonstochasticity and identifying these microevents is mandatory for improving continuous data quality and noise analysis techniques, including autocorrelation. Cataloging these events has so far been made with specific algorithms and operator’s visual inspection. We investigate here the continuous data with an unsupervised deep-learning approach built on a deep scattering network. This leads to the successful detection and clustering of these microevents as well as better determination of daily cycles associated with changes in the intensity and color of the background noise. We first provide a description of our approach, and then present the learned clusters followed by a study of their origin and associated physical phenomena. We show that the clustering is robust over several Martian days, showing distinct types of glitches that repeat at a rate of several tens per sol with stable time differences. We show that the clustering and detection efficiency for pressure drops and glitches is comparable to or better than manual or targeted detection techniques proposed to date, noticeably with an unsupervised approach. Finally, we discuss the origin of other clusters found, especially glitch sequences with stable time offsets that might generate artifacts in autocorrelation analyses. We conclude with presenting the potential of unsupervised learning for long-term space mission operations, in particular, for geophysical and environmental observatories.
- Published
- 2021
- Full Text
- View/download PDF