1. Latency-Aware Strategies for Deploying Data Stream Processing Applications on Large Cloud-Edge Infrastructure
- Author
-
Laurent Lefèvre, Alexandre da Silva Veith, Marcos Dias De Assuncao, Department of Computer Science [University of Toronto] (DCS), University of Toronto, Ecole de Technologie Supérieure [Montréal] (ETS), Algorithms and Software Architectures for Distributed and HPC Platforms (AVALON), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Laboratoire de l'Informatique du Parallélisme (LIP), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer Networks and Communications ,business.industry ,Data stream mining ,Computer science ,020206 networking & telecommunications ,Cloud computing ,02 engineering and technology ,Computer Science Applications ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Hardware and Architecture ,Scalability ,0202 electrical engineering, electronic engineering, information engineering ,Overhead (computing) ,020201 artificial intelligence & image processing ,The Internet ,Enhanced Data Rates for GSM Evolution ,Latency (engineering) ,business ,Software ,Edge computing ,Information Systems ,Computer network - Abstract
International audience; Internet of Things (IoT) applications often require the processing of data streams generated by devices dispersed over a large geographical area. Traditionally, these data streams are forwarded to a distant cloud for processing, thus resulting in high application end-to-end latency. Recent work explores the combination of resources located in clouds and at the edges of the Internet, called cloud-edge infrastructure, for deploying Data Stream Processing (DSP) applications. Most previous work, however, fails to scale to very large IoT settings. This paper introduces deployment strategies for the placement of DSP applications on to cloud-edge infrastructure. The strategies split an application graph into regions and consider regions with stringent time requirements for edge placement. The proposed Aggregate End-to-End Latency Strategy with Region Patterns and Latency Awareness (AELS+RP+LA) decreases the number of evaluated resources when computing an operator’s placement by considering the communication overhead across computing resources. Simulation results show that, unlike the state-of-the-art, AELS+RP+LA scales to environments with more than 100k resources with negligible impact on the application end-to-end latency.
- Published
- 2023