1. Theoretical Analysis of AlAs₀.₅₆Sb₀.₄₄ Single Photon Avalanche Diodes With High Breakdown Probability
- Author
-
Xiao Jin, Baolai Liang, Shiyu Xie, Jamal Ahmed, John P. R. David, Diana L. Huffaker, Manoj Kesaria, and Xin Yi
- Subjects
Materials science ,APDS ,business.industry ,Condensed Matter Physics ,Avalanche photodiode ,Noise (electronics) ,Atomic and Molecular Physics, and Optics ,Avalanche breakdown ,law.invention ,chemistry.chemical_compound ,chemistry ,law ,Ionization ,Indium phosphide ,Geiger counter ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Diode - Abstract
Single photon avalanche diodes (SPADs) are key enabling technologies for a wide range of applications in the near-infrared wavelength range. Recently, AlAs0.56 Sb0.44 (hereafter AlAsSb) lattice-matched to InP has been demonstrated for extremely low excess noise avalanche photodiodes (APDs) due to its large disparity between electron and hole ionization coefficients ( $\alpha $ and $\beta $ respectively). The $\alpha /\beta $ ratio also plays a role in Geiger mode operation as it affects the avalanche breakdown probability and hence detection efficiency. In this work, we theoretically investigate the performance of AlAsSb based SPADs. The probability of breakdown for electron-initiated Geiger mode operation increases more sharply with multiplication region width due to progressively more dissimilar ionization coefficients. In comparison with other common avalanche materials, such as InAlAs, InP and Si, our result also suggests that SPADs based on AlAsSb have a sharper breakdown probability than the other three materials under similar low overbias ratio. The calculated breakdown probability of 0.81 in AlAsSb is 0.18 and 0.28 higher than that of InAlAs/Si and InP respectively at 5% overbias ratio and with avalanche region width of 1500 nm.
- Published
- 2021