1. An attention-fused network for semantic segmentation of very-high-resolution remote sensing imagery
- Author
-
Xiuping Jia, Shanshan Li, Xuan Yang, Jocelyn Chanussot, Baipeng Li, Zhengchao Chen, Bing Zhang, Pan Chen, Chinese Academy of Sciences [Beijing] (CAS), GIPSA - Signal Images Physique (GIPSA-SIGMAPHY), GIPSA Pôle Sciences des Données (GIPSA-PSD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), Apprentissage de modèles à partir de données massives (Thoth), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Australian Defence Force Academy [Canberra] (ADFA), and ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
- Subjects
FOS: Computer and information sciences ,010504 meteorology & atmospheric sciences ,Computer science ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,0211 other engineering and technologies ,Convolutional neural network ,02 engineering and technology ,Very-high-resolution imagery ,01 natural sciences ,Segmentation ,Computers in Earth Sciences ,Engineering (miscellaneous) ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,Block (data storage) ,Attention-fused network ,business.industry ,Deep learning ,ISPRS ,Sensor fusion ,Semantic segmentation ,Atomic and Molecular Physics, and Optics ,Computer Science Applications ,Artificial intelligence ,F1 score ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Encoder ,Multipath propagation - Abstract
Semantic segmentation is an essential part of deep learning. In recent years, with the development of remote sensing big data, semantic segmentation has been increasingly used in remote sensing. Deep convolutional neural networks (DCNNs) face the challenge of feature fusion: very-high-resolution remote sensing image multisource data fusion can increase the network's learnable information, which is conducive to correctly classifying target objects by DCNNs; simultaneously, the fusion of high-level abstract features and low-level spatial features can improve the classification accuracy at the border between target objects. In this paper, we propose a multipath encoder structure to extract features of multipath inputs, a multipath attention-fused block module to fuse multipath features, and a refinement attention-fused block module to fuse high-level abstract features and low-level spatial features. Furthermore, we propose a novel convolutional neural network architecture, named attention-fused network (AFNet). Based on our AFNet, we achieve state-of-the-art performance with an overall accuracy of 91.7% and a mean F1 score of 90.96% on the ISPRS Vaihingen 2D dataset and an overall accuracy of 92.1% and a mean F1 score of 93.44% on the ISPRS Potsdam 2D dataset., Comment: 35 pages. Published by ISPRS Journal of Photogrammetry and Remote Sensing
- Published
- 2021
- Full Text
- View/download PDF