1. Integrating Scalable Genome Sequencing Into Microbiology Laboratories for Routine Antimicrobial Resistance Surveillance
- Author
-
Geetha Nagaraj, Elmer M Herrera, Agnettah M Olorosa, Stefany Alejandra Arévalo, Carolin Vegvari, Jolaade J Ajiboye, Monica Abrudan, Johan Fabian Bernal, Erik C D Osma Castro, David M. Aanensen, Sophia David, Khalil Abudahab, June M Gayeta, K L Ravikumar, Erkison Ewomazino Odih, Pilar Donado-Godoy, Celia C. Carlos, John Stelling, Mihir Kekre, Ali Molloy, Harry Harste, Vandana Govindan, K N Ravishankar, Silvia Argimón, Ben Taylor, Alejandra Arevalo, Nicole E. Wheeler, Dawn Muddyman, Anderson O Oaikhena, D Sravani, Maria Fernanda Valencia, Akshata Prabhu, Steffimole Rose, M R Shincy, Ayorinde O Afolayan, Iruka N. Okeke, Marietta L Lagrada, Varun Shamanna, Polle Krystle V Macaranas, and Anthony Underwood
- Subjects
Microbiology (medical) ,Surveillance data ,Standardization ,Supplement Articles ,DNA sequencing ,AMR surveillance ,microbiology laboratory ,Antibiotic resistance ,Drug Resistance, Bacterial ,Global health ,Medicine ,Humans ,antimicrobial resistance ,Whole genome sequencing ,Whole Genome Sequencing ,business.industry ,Genomics ,Data science ,Anti-Bacterial Agents ,Infectious Diseases ,AcademicSubjects/MED00290 ,whole-genome sequencing ,Scalability ,Epidemiological surveillance ,business ,Laboratories ,WGS - Abstract
Antimicrobial resistance (AMR) is considered a global threat, and novel drug discovery needs to be complemented with systematic and standardized epidemiological surveillance. Surveillance data are currently generated using phenotypic characterization. However, due to poor scalability, this approach does little for true epidemiological investigations. There is a strong case for whole-genome sequencing (WGS) to enhance the phenotypic data. To establish global AMR surveillance using WGS, we developed a laboratory implementation approach that we applied within the NIHR Global Health Research Unit (GHRU) on Genomic Surveillance of Antimicrobial Resistance. In this paper, we outline the laboratory implementation at 4 units: Colombia, India, Nigeria, and the Philippines. The journey to embedding WGS capacity was split into 4 phases: Assessment, Assembly, Optimization, and Reassessment. We show that on-boarding WGS capabilities can greatly enhance the real-time processing power within regional and national AMR surveillance initiatives, despite the high initial investment in laboratory infrastructure and maintenance. Countries looking to introduce WGS as a surveillance tool could begin by sequencing select Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens that can demonstrate the standardization and impact genome sequencing has in tackling AMR.
- Published
- 2021