1. Urban economics in a historical perspective: Recovering data with machine learning
- Author
-
Pierre-Philippe Combes, Yanos Zylberberg, Laurent Gobillon, Institut d'Études Politiques [IEP] - Paris, Centre National de la Recherche Scientifique (CNRS), Paris School of Economics (PSE), École des Ponts ParisTech (ENPC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Paris Jourdan Sciences Economiques (PJSE), Université Paris 1 Panthéon-Sorbonne (UP1)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Bristol [Bristol], and ANR-17-EURE-0001,PGSE,Ecole d'Economie de Paris(2017)
- Subjects
JEL: R - Urban, Rural, Regional, Real Estate, and Transportation Economics/R.R1 - General Regional Economics/R.R1.R14 - Land Use Patterns ,Economics and Econometrics ,History ,Exploit ,Computer science ,media_common.quotation_subject ,Machine learning ,computer.software_genre ,JEL: C - Mathematical and Quantitative Methods/C.C4 - Econometric and Statistical Methods: Special Topics/C.C4.C45 - Neural Networks and Related Topics ,Transcription (linguistics) ,0502 economics and business ,Quality (business) ,JEL: N - Economic History/N.N9 - Regional and Urban History/N.N9.N90 - General, International, or Comparative ,050207 economics ,050205 econometrics ,media_common ,Flexibility (engineering) ,050208 finance ,Urban economics ,business.industry ,05 social sciences ,Perspective (graphical) ,JEL: R - Urban, Rural, Regional, Real Estate, and Transportation Economics/R.R1 - General Regional Economics/R.R1.R11 - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes ,[SHS.ECO]Humanities and Social Sciences/Economics and Finance ,Urban Studies ,JEL: R - Urban, Rural, Regional, Real Estate, and Transportation Economics/R.R1 - General Regional Economics/R.R1.R12 - Size and Spatial Distributions of Regional Economic Activity ,JEL: C - Mathematical and Quantitative Methods/C.C8 - Data Collection and Data Estimation Methodology • Computer Programs/C.C8.C81 - Methodology for Collecting, Estimating, and Organizing Microeconomic Data • Data Access ,Predictive power ,Artificial intelligence ,business ,computer - Abstract
A recent literature has used a historical perspective to better understand fundamental questions of urban economics. However, a wide range of historical documents of exceptional quality remain underutilised: their use has been hampered by their original format or by the massive amount of information to be recovered. In this paper, we describe how and when the flexibility and predictive power of machine learning can help researchers exploit the potential of these historical documents. We first discuss how important questions of urban economics rely on the analysis of historical data sources and the challenges associated with transcription and harmonisation of such data. We then explain how machine learning approaches may address some of these challenges and we discuss possible applications.
- Published
- 2021