1. Improved Turn-On and Operating Voltages in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes
- Author
-
Manabu Taniguchi, Guo-Dong Hao, Naoki Tamari, and Shin-ichiro Inoue
- Subjects
010302 applied physics ,Materials science ,Equivalent series resistance ,Solid-state physics ,business.industry ,Annealing (metallurgy) ,Ultraviolet light emitting diodes ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Electrical resistivity and conductivity ,0103 physical sciences ,Materials Chemistry ,Optoelectronics ,Electrical and Electronic Engineering ,0210 nano-technology ,business ,Ohmic contact ,Voltage ,Diode - Abstract
While good ohmic contact formation has been achieved on both p-GaN and n-AlGaN surfaces, the turn-on and operating voltages of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) remain very high. We find that this critical problem is mainly caused by the large difference between the annealing temperatures required for ohmic contact formation on the p-GaN and high Al-fraction n-AlGaN surfaces. We studied the effects of the high-temperature annealing treatments required for n-ohmic contact formation on the subsequent p-ohmic contact formation process in DUV-LEDs. The results show that post-annealing treatment at high temperature is necessary to form an ohmic contact on n-Al0.7Ga0.3N, but a treatment temperature of 900°C or more could cause severe degradation of the specific contact resistivity and the bulk resistivity of p-GaN. We conclude that 900°C is the optimum temperature to form an ohmic contact on n-Al0.7Ga0.3N in DUV-LEDs, where p-GaN and n-Al0.7Ga0.3N act as the p- and n-ohmic contact layers, respectively. We also found that the specific contact resistivity of p-GaN can be reduced by an additional low-temperature annealing treatment after the high-temperature annealing step; this effect can be attributed to the enhancement of the hole concentration in the p-GaN surface contact region. Finally, DUV-LEDs that emit at 280 nm were fabricated using four different annealing treatments during processing. A considerable reduction in the series resistance and thereby in the operating voltage was confirmed using the annealing process proposed above, consisting of a high-temperature anneal at 900°C followed by a low-temperature anneal at 500°C for 3 min.
- Published
- 2017
- Full Text
- View/download PDF