1. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
- Author
-
Xiaoting Xu, Jian Guo, Yao-Zong Gao, Juying Zhou, Stahl Johannes N, Chenying Ma, Jonathan S. Maltz, Hui Du, and Miao-Fei Han
- Subjects
Cervical cancer ,Organs at Risk ,Contouring ,Radiation ,Auto segmentation ,business.industry ,medicine.medical_treatment ,Radiotherapy Planning, Computer-Assisted ,Planning target volume ,Postoperative radiotherapy ,Uterine Cervical Neoplasms ,medicine.disease ,Surface distance ,Radiation therapy ,Deep Learning ,medicine ,Humans ,Radiology, Nuclear Medicine and imaging ,Radiotherapy treatment ,Female ,Nuclear medicine ,business ,Instrumentation ,Algorithms - Abstract
Objectives Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)-based auto-segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical cancers. Methods Computed tomography (CT) datasets from 535 cervical cancers treated with definitive or postoperative radiotherapy were collected. A DL tool based on VB-Net was developed to delineate CTVs of the pelvic lymph drainage area (dCTV1) and parametrial area (dCTV2) in the definitive radiotherapy group. The training/validation/test number is 157/20/23. CTV of the pelvic lymph drainage area (pCTV1) was delineated in the postoperative radiotherapy group. The training/validation/test number is 272/30/33. Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) were used to evaluate the contouring accuracy. Contouring times were recorded for efficiency comparison. Results The mean DSC, MSD, and HD values for our DL-based tool were 0.88/1.32 mm/21.60 mm for dCTV1, 0.70/2.42 mm/22.44 mm for dCTV2, and 0.86/1.15 mm/20.78 mm for pCTV1. Only minor modifications were needed for 63.5% of auto-segmentations to meet the clinical requirements. The contouring accuracy of the DL-based tool was comparable to that of senior radiation oncologists and was superior to that of junior/intermediate radiation oncologists. Additionally, DL assistance improved the performance of junior radiation oncologists for dCTV2 and pCTV1 contouring (mean DSC increases: 0.20 for dCTV2, 0.03 for pCTV1; mean contouring time decrease: 9.8 min for dCTV2, 28.9 min for pCTV1). Conclusions DL-based auto-segmentation improves CTV contouring accuracy, reduces contouring time, and improves clinical efficiency for treating cervical cancer.
- Published
- 2021