1. Clinical Outcome and Utilization Profiles Among Latent Groups of High-Risk Patients: Moving from Segmentation Towards Intervention
- Author
-
Xinhua Zhao, Joshua M. Thorpe, Matthew L. Maciejewski, Sandeep Vijan, Stephan D. Fihn, Franya Hutchins, Ann-Marie Rosland, Karin Daniels, Donna M. Zulman, and Hongwei Zhang
- Subjects
medicine.medical_specialty ,Percentile ,Inpatients ,business.industry ,Substance-Related Disorders ,Pain ,medicine.disease ,Mental health ,Comorbidity ,Latent class model ,Odds ,Substance abuse ,Cohort Studies ,Hospitalization ,Liver disease ,Internal medicine ,Internal Medicine ,medicine ,Humans ,business ,Cohort study - Abstract
The ability of latent class models to identify clinically distinct groups among high-risk patients has been demonstrated, but it is unclear how healthcare data can inform group-specific intervention design. Examine how utilization patterns across latent groups of high-risk patients provide actionable information to guide group-specific intervention design. Cohort study using data from 2012 to 2015. Participants were 934,787 patients receiving primary care in the Veterans Health Administration, with predicted probability of 12-month hospitalization in the top 10th percentile during 2014. Patients were assigned to latent groups via mixture-item response theory models based on 28 chronic conditions. We modeled odds of all-cause mortality, hospitalizations, and 30-day re-hospitalizations by group membership. Detailed outpatient and inpatient utilization patterns were compared between groups. A total of 764,257 (81.8%) of patients were matched with a comorbidity group. Groups were characterized by substance use disorders (14.0% of patients assigned), cardiometabolic conditions (25.7%), mental health conditions (17.6%), pain/arthritis (19.1%), cancer (15.3%), and liver disease (8.3%). One-year mortality ranged from 2.7% in the Mental Health group to 14.9% in the Cancer group, compared to 8.5% overall. In adjusted models, group assignment predicted significantly different odds of each outcome. Groups differed in their utilization of multiple types of care. For example, patients in the Pain group had the highest utilization of in-person primary care, with a mean (SD) of 5.3 (5.0) visits in the year of follow-up, while the Substance Use Disorder group had the lowest, with 3.9 (4.1) visits. The Substance Use Disorder group also had the highest rates of using services for housing instability (25.1%), followed by the Liver group (10.1%). Latent groups of high-risk patients had distinct hospitalization and utilization profiles, despite having comparable levels of predicted baseline risk. Utilization profiles pointed towards system-specific care needs that could inform tailored interventions.
- Published
- 2021