1. WIRE-MESH CAPACITANCE TOMOGRAPHY FOR TREATMENT PLANNING SYSTEM OF ELECTRO-CAPACITIVE CANCER THERAPY
- Author
-
Anis Nisma Yanti, Endarko Endarko, Warsito P. Taruno, Marlin Ramadhan Baidillah, and Triwikantoro Triwikantoro
- Subjects
Physics ,Optics ,Human head ,Wire mesh ,business.industry ,Capacitive sensing ,Electric field ,General Engineering ,Cancer therapy ,Tomography ,business ,Capacitance ,Intensity (physics) - Abstract
The wire-mesh capacitance tomography (WMCT) has been applied to visualize 2D of the distribution of electric field intensity in the treatment planning system (TPS) of electro-capacitive cancer therapy (ECCT) using human head model. WMCT is proposed in this study to estimate accurately the distribution of electric field intensity which is the main optimum factors of ECCT in order to compensate the inaccuracy of TPS ECCT simulation. The experimental and simulation studies were conducted with wire-mesh sensor consisted of 8×8 wire matrix of copper in human head model using two type of helmet ECCT. The result of electric field value at the intersection wire-mesh have been compared between experimental studies and simulation studies. The electric field average value resulted from ECCT helmet-1 is higher than ECCT helmet-2. The average electric field generated by the ECCT helmet-1 is 1585.72 V/m in an air medium, 97.43 V/m in grey matter and 80.58 V/m in the cancer. While the average electric field generated by the ECCT helmet-2 is 1413.28 V/m in an air medium, 64.20 V/m in grey matter and 52.65 V/m in the cancer. ECCT helmet-1 and helmet-2 result the different of electric field distribution pattern. ECCT helmet-1 is more optimal for used to patient has cancer position in the right and bottom, while ECCT helmet-2 is more optimal for used to patient has cancer position in the top and bottom.
- Published
- 2021
- Full Text
- View/download PDF