1. A chemokine regulatory loop induces cholesterol synthesis in lung-colonizing triple-negative breast cancer cells to fuel metastatic growth
- Author
-
Zhe Wang, Xinfeng Zhang, Lali K. Medina-Kauwe, Xiaojiang Cui, Tian-Yu Lee, Neil A. Bhowmick, Ying Zhang, Bingchen Han, Stephen L. Shiao, Xuemo Fan, Felix Alonso-Valenteen, Nan Deng, Bowen Gao, Armando E. Giuliano, Yali Xu, and Sandrine Billet
- Subjects
Chemokine ,Angiogenesis ,Triple Negative Breast Neoplasms ,CCL2 ,Metastasis ,Mice ,Breast cancer ,Cell Line, Tumor ,Drug Discovery ,Genetics ,medicine ,Animals ,Humans ,Lung ,Molecular Biology ,Triple-negative breast cancer ,Pharmacology ,Neovascularization, Pathologic ,biology ,business.industry ,medicine.disease ,CXCL1 ,medicine.anatomical_structure ,Cancer research ,biology.protein ,Molecular Medicine ,Chemokines ,business - Abstract
Triple-negative breast cancer (TNBC) has a high propensity for organ-specific metastasis. However, the underlying mechanisms are not well understood. Here we show that the primary TNBC tumor-derived C-X-C motif chemokines 1/2/8 (CXCL1/2/8) stimulate lung-resident fibroblasts to produce the C-C motif chemokines 2/7 (CCL2/7), which, in turn, activate cholesterol synthesis in lung-colonizing TNBC cells and induce angiogenesis at lung metastatic sites. Inhibiting cholesterol synthesis in lung-colonizing breast tumor cells by pulmonary administration of simvastatin-carrying HER3-targeting nanoparticles reduces angiogenesis and growth of lung metastases in a syngeneic TNBC mouse model. Our findings reveal a novel, chemokine-regulated mechanism for the cholesterol synthesis pathway and a critical role of metastatic site-specific cholesterol synthesis in the pulmonary tropism of TNBC metastasis. The study has implications for the unresolved epidemiological observation that use of cholesterol-lowering drugs has no effect on breast cancer incidence but can unexpectedly reduce breast cancer mortality, suggesting interventions of cholesterol synthesis in lung metastases as an effective treatment to improve survival in individuals with TNBC.
- Published
- 2022
- Full Text
- View/download PDF