Tian, Meng, Qin, Shijie, Whalley, W. Richard, Zhou, Hu, Ren, Tusheng, and Gao, Weida
Soil structure influences the soil hydraulic properties, aeration and resistance to root penetration. Many indicators can be used to investigate the changes of soil structure, but using a single indicator or method has limitations. This study evaluates the effects of 15-years tillage management on soil structure with soil bulk density (BD) , penetrometer resistance (PR), soil water retention curve (SWRC), least limiting water range (LLWR) and X-ray computed tomography (CT). The treatments include no-tillage (NT), rotary tillage (RT), and mouldboard plough (MP). Soil bulk density of the 0–30 cm soil profile was measured after the establishment of tillage treatments for 7, 9, 12 and 14-years. The values of PR , SWRC, LLWR, and 3-D pore geometry of the 5–10 and 15–20 cm layers were determined in the 15th year of the experiment. The greater BD in the 0–5 cm layer of NT was not observed after 9 years, but an increased BD in the 5–20 cm layer was found in most years. Tillage had no effect on PR in wet soil. When soil had dried, the NT treatment had a greater PR and it was the lower limiting factor of LLWR, ultimately leading to a narrower LLWR of NT. Both NT and RT showed lower proportions of structural but higher textural pores. The macroporosity (> 50 µm) from X-ray CT was greater than that estimated from SWRC of the 15–20 cm layer. The characteristics of pore morphology were similar under three tillage treatments. Therefore, NT resulted in a narrower LLWR due to the denser soil layer, yet similar macropores may alleviate the negative impacts on crop growth caused by lower LLWR. It was suggested that using LLWR and characteristics of macropores from X-ray CT at the same time is a suitable way to assess soil structure under various tillage practices. • After 15-years no-tillage, the physical quality is poor in 5–20 cm layer reflected by greater BD, PR, and lower LLWR. • Similar properties of macropore weak the usefulness of LLWR for assessing soil structure under no tillage treatment. • Combining LLWR with macropores from X-ray CT is a suitable way to assess soil structure under various tillage practices. [ABSTRACT FROM AUTHOR]