1. Artificial intelligence-based assessment of built environment from Google Street View and coronary artery disease prevalence.
- Author
-
Chen Z, Dazard JE, Khalifa Y, Motairek I, Al-Kindi S, and Rajagopalan S
- Subjects
- Humans, Cross-Sectional Studies, Prevalence, Male, Female, United States epidemiology, Middle Aged, Cities epidemiology, Built Environment, Coronary Artery Disease epidemiology, Artificial Intelligence
- Abstract
Background and Aims: Built environment plays an important role in the development of cardiovascular disease. Tools to evaluate the built environment using machine vision and informatic approaches have been limited. This study aimed to investigate the association between machine vision-based built environment and prevalence of cardiometabolic disease in US cities., Methods: This cross-sectional study used features extracted from Google Street View (GSV) images to measure the built environment and link them with prevalence of coronary heart disease (CHD). Convolutional neural networks, linear mixed-effects models, and activation maps were utilized to predict health outcomes and identify feature associations with CHD at the census tract level. The study obtained 0.53 million GSV images covering 789 census tracts in seven US cities (Cleveland, OH; Fremont, CA; Kansas City, MO; Detroit, MI; Bellevue, WA; Brownsville, TX; and Denver, CO)., Results: Built environment features extracted from GSV using deep learning predicted 63% of the census tract variation in CHD prevalence. The addition of GSV features improved a model that only included census tract-level age, sex, race, income, and education or composite indices of social determinant of health. Activation maps from the features revealed a set of neighbourhood features represented by buildings and roads associated with CHD prevalence., Conclusions: In this cross-sectional study, the prevalence of CHD was associated with built environment factors derived from GSV through deep learning analysis, independent of census tract demographics. Machine vision-enabled assessment of the built environment could potentially offer a more precise approach to identify at-risk neighbourhoods, thereby providing an efficient avenue to address and reduce cardiovascular health disparities in urban environments., (© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF