1. Spectral and angular solar properties of a PCM-filled double glazing unit
- Author
-
Emiliano Carnielo, Francesco Goia, Michele Zinzi, Valentina Serra, Goia, F, Zinzi, M, Carnielo, Emiliano, Serra, V., and Zinzi, M.
- Subjects
Materials science ,Thermal inertia ,Angular characterisation ,Solid-state ,Spectral characterization ,Spectral line ,Optics ,Transmittance ,Spectrophotometric analysis ,PCM ,Optical properties ,Advanced glazing ,Large integrating sphere ,Electrical and Electronic Engineering ,PCM, Sistema di vetratura avanzato, Proprietà ottiche, Sfera Integratrice, Analisi spettrofotometrica, Caratterizzazione spettrale, Caratterizzazione Angolare ,Civil and Structural Engineering ,PCM, Advanced glazing, Optical properties, Large integrating sphere, Spectrophotometric analysis, Spectral characterisation, Angular characterisation ,business.industry ,Mechanical Engineering ,Building and Construction ,Spectrophotometric analysi ,Optical propertie ,Glazing ,Integrating sphere ,Absorptance ,Incident beam ,business - Abstract
Background Phase change materials (PCMs) have been proposed as a means to increase the thermal inertia of glazing systems. These materials have optical features that need to be investigated and characterised in order to better understand the potential of these systems and to provide reliable data for numerical simulations. Methods The spectral and angular behaviour of different PCM glazing samples, characterised by different thicknesses of PCMs, were investigated by means of commercial spectrophotometer and by means of a dedicated optical test bed that includes a large integrating sphere with a diameter of 0.75 m. Such equipment was necessary because of the highly diffusive behaviour of the PCM layer when in the solid state of aggregation. Results The paper provides a data set of luminous and solar properties of glazing units with PCMs in gaps; the data set uses results from an advanced optical facility that overcomes the intrinsic limitations of commercial spectrophotometers in measuring the optical properties of the advanced transparent materials. In detail, transmittance, reflectance and absorptance spectra of double glazing units characterised by different PCM layer thicknesses in the gap, measured at different incident beam angles, are reported. Integrated values calculated according to relevant international standards are thus provided. Optical features of PCM glazing systems are also highlighted and issues related to the integration of these systems in buildings are discussed. © 2014. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
- Published
- 2015