1. Integration of distributed generation systems into generic types of commercial buildings in California
- Author
-
Medrano, M, Brouwer, J, McDonell, V, Mauzey, J, and Samuelsen, S
- Subjects
Affordable and Clean Energy ,distributed generation ,fuel cells ,micro-turbine generators ,photovoltaic arrays ,emissions ,absorption cooling ,energy efficiency measures ,load profiles ,building energy simulation ,Engineering ,Built Environment and Design ,Building & Construction - Abstract
Distributed generation (DG) of combined cooling, heat, and power (CCHP) has been gaining momentum in recent years as an efficient, secure alternative for meeting increasing power demands in the world. One of the most critical and emerging markets for DG-CCHP systems is commercial and institutional buildings. The present study focuses analysis on the main economic, energy-efficiency, and environmental impacts of the integration of three types of advanced DG technologies (high-temperature fuel cells, micro-turbines, and photovoltaic solar panels) into four types of representative generic commercial building templates (small office building, medium office building, hospital, and college/school) in southern California (e.g., mild climate), using eQUEST as energy simulation tool. Detailed load profiles for the four commercial building types during times of peak electric and peak gas consumption were analyzed and complementary strategies to further increase overall building energy efficiencies such as energy efficiency measures (e.g., day lighting, exterior shading, improved HVAC performance) and thermally activated absorption cooling were also investigated. Results show that the high-temperature fuel cell (HTFC) performance is best matched with the hospital energy loads, resulting in a 98% DG capacity factor, 85% DG heat recovery factor, and $860,000 in energy savings (6 years payback). The introduction of thermally driven double-effect absorption cooling (AC) in the college building with HTFC reduces significantly the building electricity-to-thermal load ratio and boosts the heat recovery factor from 37% to 97%. © 2007.
- Published
- 2008