In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change., A population of snow voles provides a rare example of contemporary adaptive evolution in the wild, but without a quantitative genetic perspective this genetic change, and the selective pressure that underlies it, would have gone undetected., Author Summary Biologists struggle to demonstrate adaptive evolution in wild populations: while they routinely observe natural selection on heritable traits, in only a handful of cases could they demonstrate an evolutionary response. Although various explanations for this paradox have been proposed, comprehensive empirical tests are lacking. Over the past years, we have therefore studied an alpine population of snow voles. Following all individuals throughout their lives, we found that body mass is heritable and that heavy voles have a higher fitness. Nevertheless, mean body mass did not increase. To resolve this, we disentangled the role of genes and the environment in shaping body mass. This revealed that the population did evolve, but that this was masked by environmental variation. Furthermore, although the genetic change was adaptive, it was opposite to our initial expectation: the population evolved to become lighter, not heavier. This was because although heavy voles have the highest fitness, their mass does not cause high fitness. Instead, it is the voles with the genes for being light that do best, especially when the first winter snow arrives early. This shows that populations can evolve rapidly, but that without a genetic perspective, this, and its underlying mechanism, may go undetected.