1. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment.
- Author
-
Su X, Xu Y, Fox GC, Xiang J, Kwakwa KA, Davis JL, Belle JI, Lee WC, Wong WH, Fontana F, Hernandez-Aya LF, Kobayashi T, Tomasson HM, Su J, Bakewell SJ, Stewart SA, Egbulefu C, Karmakar P, Meyer MA, Veis DJ, DeNardo DG, Lanza GM, Achilefu S, and Weilbaecher KN
- Subjects
- Animals, Breast Neoplasms pathology, Cell Line, Tumor, Cyclic AMP physiology, Female, Humans, Mice, Mice, Inbred C57BL, Arginase physiology, Breast Neoplasms immunology, Granulocyte-Macrophage Colony-Stimulating Factor physiology, Immune Tolerance, Myeloid Cells enzymology, Tumor Microenvironment
- Abstract
Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (ARG1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular l-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor-derived GM-CSF as the primary regulator of myeloid cell ARG1 expression and local immune suppression through a gene-KO screen of breast tumor cell-produced factors. The induction of myeloid cell ARG1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3 and p38 MAPK and acid signaling through cAMP were required to activate myeloid cell ARG1 expression in a STAT6-independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host antitumor immunity, driving a significant accumulation of ARG1-expressing myeloid cells compared with lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T cell therapy and immune checkpoint blockade. Taken together, we show that breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell ARG1 expression and can be targeted to enhance breast cancer immunotherapy.
- Published
- 2021
- Full Text
- View/download PDF