Botes, Mandie, Jurgens, Tamarin, Riahi, Zohreh, Visagie, Michelle, Janse van Vuuren, Rustelle, Joubert, Anna Margaretha, and van den Bout, Iman
Background: 2-Methoxyestradiol (2ME2) is an estradiol metabolite with well documented antiproliferative properties in many cancer cell lines. However, it is rapidly metabolised in vivo which limits its clinical application. Therefore, more stable derivatives with potentially improved clinical features have been designed by our group. Here we describe an estrone-like derivative of 2ME2, namely EE-15-one, that unlike other derivatives which induce cell cycle arrest, induces a rapid loss of cell–substrate adhesion through the inactivation and disassembly of focal adhesions. Methods: To assess the effect of 2-ethyl-estra-1,3,5 (10),15-tetraen-3-ol-17-one (EE-15-one) on breast cancer cell lines, cell survival was quantified. The effect of EE-15-one on cell attachment was assessed by measuring cell adhesion and cell rounding via light microscopy. Effects on focal adhesion dynamics and actin cytoskeleton organisation were visualised by immunofluorescence while focal adhesion signalling was assessed by western blot. Cell death was quantified using a lactate dehydrogenase activity (LDH) assay. To investigate specificity towards cell–substrate over cell–cell contact inhibition, EE-15-one effects on 3D cell cultures were assessed. Results: Cell survival assays show an almost complete loss of cells within 24 h of EE-15-one exposure in contrast to published sulphamoylated 2ME2 derivatives. Cell loss is linked to rapid detachment and adhesion inhibition. Focal adhesion size and number are rapidly diminished while actin fibres became severed and disappeared within 2 h post exposure. These changes were not due to cell necrosis as LDH activity only slightly increased after 24 h. Cells grown in cell–cell adhesion dependent spheroids did not respond to EE-15-one exposure suggesting that EE-15-one specifically inhibits cell–substrate adhesions but not cell–cell adhesions and does not directly impact the actin cytoskeleton. Conclusion: We show that a novel 2ME2 derivative, EE-15-one, induces rapid loss of focal adhesion function leading to cell–substrate detachment through interference with integrin-based cell–substrate adhesions, but not cadherin dependent cell–cell adhesions. Therefore, EE-15-one is the first 2ME2 derivative that has an alternative mode of action to the antimitotic activity of 2ME2. As such EE-15-one shows potential as a lead compound for further development as an inhibitor of cell–substrate adhesion which is essential for metastatic dissemination. [ABSTRACT FROM AUTHOR]