1. Hindlimb unloading in C57BL/6J mice induces bone loss at thermoneutrality without change in osteocyte and lacuno-canalicular network.
- Author
-
Peurière L, Mastrandrea C, Vanden-Bossche A, Linossier MT, Thomas M, Normand M, Lafage-Proust MH, and Vico L
- Subjects
- Mice, Male, Animals, Hindlimb Suspension, Osteocytes metabolism, Mice, Inbred C57BL, Bone and Bones metabolism, Bone Resorption metabolism, Bone Diseases, Metabolic metabolism
- Abstract
Impaired mechanical stimuli during hindlimb unloading (HLU) are believed to exacerbate osteocyte paracrine regulation of osteoclasts. We hypothesized that bone loss and deterioration of the osteocyte lacuno-canalicular network are attenuated in HLU mice housed at thermoneutrality (28 °C) compared with those housed at ambient temperature (22 °C). Following acclimatization, 20-week-old male C57BL/6J mice were submitted to HLU or kept in pair-fed control cages (CONT), for 5 days (5d) or 14d, at 22 °C or 28 °C. In the femur distal metaphysis, thermoneutral CONT mice had higher bone volume (p = 0.0007, BV/TV, in vivo μCT, vs. 14dCONT22) whilst osteoclastic surfaces of CONT and HLU were greater at 22 °C (5dCONT22 + 53 %, 5dHLU22 + 50 %, 14dCONT22 + 186 %, 14dHLU22 + 104 %, vs matching 28 °C group). In the femur diaphysis and at both temperatures, 14dHLU exhibited thinner cortices distally or proximally compared to controls; the mid-diaphysis being thicker at 28 °C than at 22 °C in all groups. Expression of cortical genes for proteolytic enzyme (Mmp13), markers for osteoclastogenic differentiation (MCSF, RANKL), and activity (TRAP, Ctsk) were increased following 22 °C HLU, whereas only Ctsk expression was increased following 28 °C HLU. Expression of cortical genes for apoptosis, senescence, and autophagy were not elevated following HLU at any temperature. Osteocyte density at the posterior mid-diaphysis was similar between groups, as was the proportion of empty lacunae (<0.5 %). However, analysis of the lacuno-canalicular network (LCN, fluorescein staining) revealed unstained areas in the 14dHLU22 group only, suggesting disrupted LCN flow in this group alone. In conclusion, 28 °C housing influences the HLU bone response but does not prevent bone loss. Furthermore, our results do not show osteocyte senescence or death, and at thermoneutrality, HLU-induced bone resorption is not triggered by osteoclastic activators RANKL and MCSF., Competing Interests: Declaration of competing interest The authors declare no conflicts of interest., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF