4 results on '"van Bavel, Ed"'
Search Results
2. A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions.
- Author
-
Petkantchin, Remy, Rousseau, Alexandre, Eker, Omer, Zouaoui Boudjeltia, Karim, Raynaud, Franck, Chopard, Bastien, Majoie, Charles, van Bavel, Ed, Marquering, Henk, Arrarte-Terreros, Nerea, Konduri, Praneeta, Georgakopoulou, Sissy, Roos, Yvo, Hoekstra, Alfons, Padmos, Raymond, Azizi, Victor, Miller, Claire, van der Kolk, Max, van der Lugt, Aad, and Dippel, Diederik W. J.
- Subjects
FIBRINOLYSIS ,INTRACRANIAL hemorrhage ,ISCHEMIC stroke ,BLOOD flow ,POROUS materials ,ATRIAL fibrillation - Abstract
One of the routine clinical treatments to eliminate ischemic stroke thrombi is injecting a biochemical product into the patient's bloodstream, which breaks down the thrombi's fibrin fibers: intravenous or intravascular thrombolysis. However, this procedure is not without risk for the patient; the worst circumstances can cause a brain hemorrhage or embolism that can be fatal. Improvement in patient management drastically reduced these risks, and patients who benefited from thrombolysis soon after the onset of the stroke have a significantly better 3-month prognosis, but treatment success is highly variable. The causes of this variability remain unclear, and it is likely that some fundamental aspects still require thorough investigations. For that reason, we conducted in vitro flow-driven fibrinolysis experiments to study pure fibrin thrombi breakdown in controlled conditions and observed that the lysis front evolved non-linearly in time. To understand these results, we developed an analytical 1D lysis model in which the thrombus is considered a porous medium. The lytic cascade is reduced to a second-order reaction involving fibrin and a surrogate pro-fibrinolytic agent. The model was able to reproduce the observed lysis evolution under the assumptions of constant fluid velocity and lysis occurring only at the front. For adding complexity, such as clot heterogeneity or complex flow conditions, we propose a 3-dimensional mesoscopic numerical model of blood flow and fibrinolysis, which validates the analytical model's results. Such a numerical model could help us better understand the spatial evolution of the thrombi breakdown, extract the most relevant physiological parameters to lysis efficiency, and possibly explain the failure of the clinical treatment. These findings suggest that even though real-world fibrinolysis is a complex biological process, a simplified model can recover the main features of lysis evolution. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Quantification of hypoxic regions distant from occlusions in cerebral penetrating arteriole trees.
- Author
-
Xue, Yidan, Georgakopoulou, Theodosia, van der Wijk, Anne-Eva, Józsa, Tamás I., van Bavel, Ed, and Payne, Stephen J.
- Subjects
GREEN'S functions ,PHYSIOLOGICAL transport of oxygen ,CEREBRAL circulation ,OXYGEN in the blood ,CAROTID artery ,BLOOD flow ,ECCENTRIC loads - Abstract
The microvasculature plays a key role in oxygen transport in the mammalian brain. Despite the close coupling between cerebral vascular geometry and local oxygen demand, recent experiments have reported that microvascular occlusions can lead to unexpected distant tissue hypoxia and infarction. To better understand the spatial correlation between the hypoxic regions and the occlusion sites, we used both in vivo experiments and in silico simulations to investigate the effects of occlusions in cerebral penetrating arteriole trees on tissue hypoxia. In a rat model of microembolisation, 25 μm microspheres were injected through the carotid artery to occlude penetrating arterioles. In representative models of human cortical columns, the penetrating arterioles were occluded by simulating the transport of microspheres of the same size and the oxygen transport was simulated using a Green's function method. The locations of microspheres and hypoxic regions were segmented, and two novel distance analyses were implemented to study their spatial correlation. The distant hypoxic regions were found to be present in both experiments and simulations, and mainly due to the hypoperfusion in the region downstream of the occlusion site. Furthermore, a reasonable agreement for the spatial correlation between hypoxic regions and occlusion sites is shown between experiments and simulations, which indicates the good applicability of in silico models in understanding the response of cerebral blood flow and oxygen transport to microemboli. Author summary: The brain function depends on the continuous oxygen supply through the bloodstream inside the microvasculature. Occlusions in the microvascular network will disturb the oxygen delivery in the brain and result in hypoxic tissues that can lead to infarction and cognitive dysfunction. To aid in understanding the formation of hypoxic tissues caused by micro-occlusions in the penetrating arteriole trees, we use rodent experiments and simulations of human vascular networks to study the spatial correlations between the hypoxic regions and the occlusion locations. Our results suggest that hypoxic regions can form distally from the occlusion site, which agrees with the previous observations in the rat brain. These distant hypoxic regions are primarily due to the lack of blood flow in the brain tissues downstream of the occlusion. Moreover, a reasonable agreement of the spatial relationship is found between the experiments and the simulations, which indicates the applicability of in silico models to study the effects of microemboli on the brain tissue. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
4. Non‐Invasive Assessment of Damping of Blood Flow Velocity Pulsatility in Cerebral Arteries With MRI.
- Author
-
Arts, Tine, Onkenhout, Laurien P., Amier, Raquel P., van der Geest, Rob, van Harten, Thijs, Kappelle, Jaap, Kuipers, Sanne, van Osch, Matthijs J.P., van Bavel, Ed T., Biessels, Geert Jan, and Zwanenburg, Jaco J.M.
- Subjects
CEREBRAL arteries ,BLOOD flow ,FLOW velocity ,MAGNETIC resonance imaging ,PULSE wave analysis - Abstract
Background: Damping of heartbeat‐induced pressure pulsations occurs in large arteries such as the aorta and extends to the small arteries and microcirculation. Since recently, 7 T MRI enables investigation of damping in the small cerebral arteries. Purpose: To investigate flow pulsatility damping between the first segment of the middle cerebral artery (M1) and the small perforating arteries using magnetic resonance imaging. Study Type: Retrospective. Subjects: Thirty‐eight participants (45% female) aged above 50 without history of heart failure, carotid occlusive disease, or cognitive impairment. Field Strength/Sequence: 3 T gradient echo (GE) T1‐weighted images, spin‐echo fluid‐attenuated inversion recovery images, GE two‐dimensional (2D) phase‐contrast, and GE cine steady‐state free precession images were acquired. At 7 T, T1‐weighted images, GE quantitative‐flow, and GE 2D phase‐contrast images were acquired. Assessment: Velocity pulsatilities of the M1 and perforating arteries in the basal ganglia (BG) and semi‐oval center (CSO) were measured. We used the damping index between the M1 and perforating arteries as a damping indicator (velocity pulsatilityM1/velocity pulsatilityCSO/BG). Left ventricular stroke volume (LVSV), mean arterial pressure (MAP), pulse pressure (PP), and aortic pulse wave velocity (PWV) were correlated with velocity pulsatility in the M1 and in perforating arteries, and with the damping index of the CSO and BG. Statistical Tests: Correlations of LVSV, MAP, PP, and PWV with velocity pulsatility in the M1 and small perforating arteries, and correlations with the damping indices were evaluated with linear regression analyses. Results: PP and PWV were significantly positively correlated to M1 velocity pulsatility. PWV was significantly negatively correlated to CSO velocity pulsatility, and PP was unrelated to CSO velocity pulsatility (P = 0.28). PP and PWV were uncorrelated to BG velocity pulsatility (P = 0.25; P = 0.68). PWV and PP were significantly positively correlated with the CSO damping index. Data Conclusion: Our study demonstrated a dynamic damping of velocity pulsatility between the M1 and small cerebral perforating arteries in relation to proximal stress. Level of Evidence: 4 Technical Efficacy: Stage 1 [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.