The most commonly used methods for measuring the amount of seston removed from the water column (uptake) by populations of suspension-feeding bivalve molluscs involve taking discrete water samples followed by laboratory analyses. Here we describe a new method based on in situ fluorometry that provides rapid measurement of seston removal rates. The new system is comprised of two identical units, each consisting of an in situ fluorometer, data logger and peristaltic pump with plastic tube attached to a deployment device. The deployment device allows precise placement of the fluorometer probe and intake end of the plastic tube so that in situ fluorescence (chlorophyll a) can be measured and water can be sampled for seston analyses in the laboratory from the same height. The typical setup involves placing one unit upstream and the other downstream of the study area and sampling the water at periodic intervals. Changes in seston concentration are revealed in the field by the fluorometers, and the sampled water can be analyzed in the laboratory for various seston parameters. Comparisons of the in situ data with data from laboratory analyses of pumped water samples were made for three species at four study sites: the eastern oyster (Crassostrea virginica), hard clam (Mercenaria mercenaria), and blue mussel (Mytilus edulis). Comparisons of measured upstream versus downstream seston concentrations indicated significant (t-tests, P < 0.05) differences (uptake) for six of eight trials based on in situ fluorometry, but only marginally significant (P < 0.10) differences at two of the four trials using laboratory chlorophyll a measurements. These data demonstrate that compared with sampling methods requiring laboratory analyses, the new in situ method provides much more rapid quantitative assessments and may provide more accurate estimates. [ABSTRACT FROM AUTHOR]