Singh, Shree N., Tripathi, Rudra D., Singh, Rana P., Dhania, Geeta, Sharma, Asha, and Jaiwal, Pawan K.
Phytoremediation is an eco-friendly cost-effective technology, as compared to classical physical, chemical and even to the microorganisms-based bioremediation techniques. It is useful for the remediation of sites contaminated with non-biodegradable toxic heavy metals, hazardous air pollutants like oxides of nitrogen and sulfur, and photoxidants like ozone, recalcitrant organic pollutants, like chlorinated pesticides, organophosphate, insecticides, petroleum hydrocarbons, polynuclear aromatic hydrocarbons (PAHs), sulphonated biphenyl (PCBs) and chlororinated solvents (TCE, PCE) etc. Amongst the major limitations of the technique, tolerance level of plants to high contamination zones, treatment of only bioavailable fraction of the contaminants and remediation of the contaminants largely from within a meter of the surface of the soil and within a few meters of the surface of the groundwater can be counted. The agro-climatic and hydrological conditions may also limit the plant growth on the treatment site and chances of entering of the contaminants in food chain through animals /insects that eat plant material containing the contaminants need to be attended while advocating for this technology. Plant biomass and agricultural vegetable wastes can also be used as adsorbant systems for the remediation of waterbodies from organic and inorganic pollutant's contaminations. Due to the low cost of the technique, the low disturbance in the in situ treatments, a higher probability for the public acceptance and an easy handling, this technology indicates a strong potential as a natural, or improved, solar energy driven remediation approach for the treatments of the various kinds of the pollutants. [ABSTRACT FROM AUTHOR]