1. An open source pipeline for design of experiments for hyperelastic models of the skin with applications to keloids
- Author
-
Davide Baroli, Danas Sutula, Jérôme Chambert, Franz Chouly, Arnaud Lejeune, Aflah Elouneg, Paul Hauseux, Marco Sensale, Stéphane Bordas, Emmanuelle Jacquet, Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institute of Computational Engineering (University of Luxembourg), Department of Computer Science and Information Engineering [Taiwan], National Central University [Taiwan] (NCU), China Medical University Hospital [Taichung], Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), AICES Graduate School, RWTH Aachen University, and Region de Bourgogne Franche-Comte, France 2017-Y-063972018-Y045362019-Y-10541Luxembourg National Research FundO17QCCAAS-11758809FEMTO-ST Institute Department of Applied Mechanics Laboratoire de Mathematiques de Besancon FEDER funding innovation DFG Clusters of Excellence: Internet of Production University of Luxembourg, Institute of Computational Engineering
- Subjects
Optimization ,meshless methods ,Computer science ,Model sensitivity ,mechanical-properties ,Finite Element Analysis ,Biomedical Engineering ,02 engineering and technology ,Models, Biological ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Biomaterials ,03 medical and health sciences ,0302 clinical medicine ,strain ,Humans ,Applied mathematics ,digital image correlation ,tissues ,Sensitivity (control systems) ,implementation ,Skin ,parameters ,Design of experiments ,A priori estimate ,030206 dentistry ,Soft tissue ,Solver ,Inverse problem ,021001 nanoscience & nanotechnology ,Finite element method ,Biomechanical Phenomena ,finite-element model ,Mechanics of Materials ,Keloid ,Hyperelastic material ,Displacement field ,identification ,FEniCS ,elasticity ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,Stress, Mechanical ,0210 nano-technology - Abstract
International audience; The aim of this work is to characterize the mechanical parameters governing the in-plane behavior of human skin and, in particular, of a keloid-scar. We consider 2D hyperelastic bi-material model of a keloid and the surrounding healthy skin. The problem of finding the optimal model parameters that minimize the misfit between the model observations and the in vivo experimental measurements is solved using our in-house developed inverse solver that is based on the FEniCS finite element computational platform. The paper focuses on the model parameter sensitivity quantification with respect to the experimental measurements, such as the displacement field and reaction force measurements. The developed tools quantify the significance of different measurements on different model parameters and, in turn, give insight into a given model's ability to capture experimental measurements. Finally, an apriori estimate for the model parameter sensitivity is proposed that is independent of the actual measurements and that is defined in the whole computational domain. This estimate is primarily useful for the design of experiments, specifically, in localizing the optimal displacement field measurement sites for the maximum impact on model parameter inference.
- Published
- 2020