1. Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems
- Author
-
Yazhou Zhang, Jianguo Chen, Xu-Fang Chen, Lu Sun, Hang Sun, and Lishen Qian
- Subjects
geography ,Plateau ,geography.geographical_feature_category ,biology ,Ecology ,Cushion plant ,Community structure ,Plant Science ,biology.organism_classification ,Phylogenetic diversity ,Cushion ,Spatial ecology ,Ecosystem ,Species richness ,Ecology, Evolution, Behavior and Systematics - Abstract
The Qinghai-Tibet Plateau (QTP) is an important cushion plant hotspot. However, the distribution of cushion plants on the QTP is unknown, as are the factors that drive cushion plant distribution, limiting our understanding of the evolution of cushion species in the region. In this study, we assessed spatial patterns of total cushion plant diversity (including taxonomic and phylogenetic) over the entire QTP and compared patterns of diversity of cushion plants with different typologies (i.e., compact vs. loose). We also examined how these patterns were related to climatic features. Our results indicate that the southern QTP hosts the highest total cushion plant richness, especially in the south-central Hengduan Mountains subregion. The total number of cushion species declines from south to north and from southeast to northwest. Compact cushion plants exhibit similar patterns as the total cushion plant richness, whereas loose cushion plants show random distribution. Cushion plant phylogenetic diversity showed a similar pattern as that of the total cushion plant richness. In addition, cushion plant phylogenetic community structure was clustered in the eastern and southwestern QTP, whereas random or overdispersed in other areas. Climatic features represented by annual energy and water trends, seasonality and extreme environmental factors, had significant effects on cushion plant diversity patterns but limited effects on the phylogenetic community structure, suggesting that climatic features indeed promote the formation of cushion plants. Because cushion plants play vital roles in alpine ecosystems, our findings not only promote our understanding of the evolution and formation of alpine cushion plant diversity but also provide an indispensable foundation for future studies on cushion plant functions and thus alpine ecosystem sustainability in the entire QTP region.
- Published
- 2022