1. Granular Transcriptomic Signatures Derived from Independent Component Analysis of Bulk Nervous Tissue for Studying Labile Brain Physiologies
- Author
-
Michael Cary, Roland J. Bainton, and Zeid M. Rusan
- Subjects
0303 health sciences ,Cell type ,biology ,Microarray ,Computational biology ,biology.organism_classification ,Transcriptome ,03 medical and health sciences ,Multicellular organism ,0302 clinical medicine ,Gene expression ,DNA microarray ,Drosophila melanogaster ,Gene ,030217 neurology & neurosurgery ,030304 developmental biology - Abstract
Multicellular organisms employ concurrent gene regulatory programs to control development and physiology of cells and tissues. The Drosophila melanogaster model system has a remarkable history of revealing the genes and mechanisms underlying fundamental biology yet much remains unclear. In particular, brain xenobiotic protection and endobiotic regulatory systems that require transcriptional coordination across different cell types, operating in parallel with the primary nervous system and metabolic functions of each cell type, are still poorly understood. Here we use the unsupervised machine learning method independent component analysis (ICA) on majority fresh-frozen, bulk tissue microarrays to define biologically pertinent gene expression signatures which are sparse, i.e. each involving only a fraction of all fly genes. We optimize the gene expression signature definitions partly through repeated application of a stochastic ICA algorithm to a compendium of 3,346 microarrays from 221 experiments provided by the Drosophila research community. Our optimized ICA model of pan fly gene expression consists of 850 modules of co-regulated genes that map to tissue developmental stages, disease states, cell-autonomous pathways and presumably novel processes. Importantly, we show biologically relevant gene modules expressed at varying amplitudes in whole brain and isolated adult blood-brain barrier cell levels. Thus, whole tissue derived ICA transcriptional signatures that transcend single cell type boundaries provide a window into the transcriptional states of difficult to isolate cell ensembles maintaining delicate brain physiologies. We believe the fly ICA gene expression signatures set, by virtue of the success of ICA at inferring robust often low amplitude patterns across large datasets and the quality of the input samples, to be an important asset for analyzing compendium and newly generated microarray or RNA-seq expression datasets.
- Published
- 2020
- Full Text
- View/download PDF