14 results on '"Lutz Brusch"'
Search Results
2. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration
- Author
-
Kirstin Meyer, Hernan Morales‐Navarrete, Sarah Seifert, Michaela Wilsch‐Braeuninger, Uta Dahmen, Elly M Tanaka, Lutz Brusch, Yannis Kalaidzidis, and Marino Zerial
- Subjects
actin cytoskeleton ,bile canaliculi ,liver regeneration ,mechano‐sensing ,YAP ,Biology (General) ,QH301-705.5 ,Medicine (General) ,R5-920 - Abstract
Abstract The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F‐actin and phospho‐myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co‐activator YAP, which localizes to apical F‐actin‐rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical–biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano‐sensory mechanism that activates YAP in a switch‐like manner. We propose that the apical surface of hepatocytes acts as a self‐regulatory mechano‐sensory system that responds to critical levels of bile acids as readout of tissue status.
- Published
- 2020
- Full Text
- View/download PDF
3. Correction: Quantification of nematic cell polarity in three-dimensional tissues.
- Author
-
André Scholich, Simon Syga, Hernán Morales-Navarrete, Fabián Segovia-Miranda, Hidenori Nonaka, Kirstin Meyer, Walter de Back, Lutz Brusch, Yannis Kalaidzidis, Marino Zerial, Frank Jülicher, and Benjamin M Friedrich
- Subjects
Biology (General) ,QH301-705.5 - Abstract
[This corrects the article DOI: 10.1371/journal.pcbi.1008412.].
- Published
- 2021
- Full Text
- View/download PDF
4. Quantification of nematic cell polarity in three-dimensional tissues.
- Author
-
André Scholich, Simon Syga, Hernán Morales-Navarrete, Fabián Segovia-Miranda, Hidenori Nonaka, Kirstin Meyer, Walter de Back, Lutz Brusch, Yannis Kalaidzidis, Marino Zerial, Frank Jülicher, and Benjamin M Friedrich
- Subjects
Biology (General) ,QH301-705.5 - Abstract
How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.
- Published
- 2020
- Full Text
- View/download PDF
5. A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness.
- Author
-
T J Sego, Josua O Aponte-Serrano, Juliano Ferrari Gianlupi, Samuel R Heaps, Kira Breithaupt, Lutz Brusch, Jessica Crawshaw, James M Osborne, Ellen M Quardokus, Richard K Plemper, and James A Glazier
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are essential for understanding disease outcomes and optimizing therapies. Such simulations need to support continuous updating in response to rapid advances in understanding of infection mechanisms, and parallel development of components by multiple groups. We present an open-source platform for multiscale spatiotemporal simulation of an epithelial tissue, viral infection, cellular immune response and tissue damage, specifically designed to be modular and extensible to support continuous updating and parallel development. The base simulation of a simplified patch of epithelial tissue and immune response exhibits distinct patterns of infection dynamics from widespread infection, to recurrence, to clearance. Slower viral internalization and faster immune-cell recruitment slow infection and promote containment. Because antiviral drugs can have side effects and show reduced clinical effectiveness when given later during infection, we studied the effects on progression of treatment potency and time-of-first treatment after infection. In simulations, even a low potency therapy with a drug which reduces the replication rate of viral RNA greatly decreases the total tissue damage and virus burden when given near the beginning of infection. Many combinations of dosage and treatment time lead to stochastic outcomes, with some simulation replicas showing clearance or control (treatment success), while others show rapid infection of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less effective when given later, treatments at late times are occasionally effective. We illustrate how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our software modules and publicly-available software repository.
- Published
- 2020
- Full Text
- View/download PDF
6. Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human
- Author
-
Erik Kolbe, Susanne Aleithe, Christiane Rennert, Luise Spormann, Fritzi Ott, David Meierhofer, Robert Gajowski, Claus Stöpel, Stefan Hoehme, Michael Kücken, Lutz Brusch, Michael Seifert, Witigo von Schoenfels, Clemens Schafmayer, Mario Brosch, Ute Hofmann, Georg Damm, Daniel Seehofer, Jochen Hampe, Rolf Gebhardt, and Madlen Matz-Soja
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Summary: The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well. : Wnt/β-catenin and Hh signaling contribute to embryogenesis as well as to the maintenance of organ homeostasis through intensive crosstalk. Here, Kolbe et al. describe that both pathways act largely complementary to each other in the healthy liver and that this crosstalk is responsible for the maintenance of metabolic zonation.
- Published
- 2019
- Full Text
- View/download PDF
7. Liquid-crystal organization of liver tissue
- Author
-
Hernán Morales-Navarrete, Hidenori Nonaka, André Scholich, Fabián Segovia-Miranda, Walter de Back, Kirstin Meyer, Roman L Bogorad, Victor Koteliansky, Lutz Brusch, Yannis Kalaidzidis, Frank Jülicher, Benjamin M Friedrich, and Marino Zerial
- Subjects
liquid crystal order ,3D tissue organization ,liver ,cell polarity ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images of mouse liver tissue and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells, since silencing Integrin-β1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.
- Published
- 2019
- Full Text
- View/download PDF
8. pSSAlib: The partial-propensity stochastic chemical network simulator.
- Author
-
Oleksandr Ostrenko, Pietro Incardona, Rajesh Ramaswamy, Lutz Brusch, and Ivo F Sbalzarini
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Chemical reaction networks are ubiquitous in biology, and their dynamics is fundamentally stochastic. Here, we present the software library pSSAlib, which provides a complete and concise implementation of the most efficient partial-propensity methods for simulating exact stochastic chemical kinetics. pSSAlib can import models encoded in Systems Biology Markup Language, supports time delays in chemical reactions, and stochastic spatiotemporal reaction-diffusion systems. It also provides tools for statistical analysis of simulation results and supports multiple output formats. It has previously been used for studies of biochemical reaction pathways and to benchmark other stochastic simulation methods. Here, we describe pSSAlib in detail and apply it to a new model of the endocytic pathway in eukaryotic cells, leading to the discovery of a stochastic counterpart of the cut-out switch motif underlying early-to-late endosome conversion. pSSAlib is provided as a stand-alone command-line tool and as a developer API. We also provide a plug-in for the SBMLToolbox. The open-source code and pre-packaged installers are freely available from http://mosaic.mpi-cbg.de.
- Published
- 2017
- Full Text
- View/download PDF
9. Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
- Author
-
Fabian Rost, Aida Rodrigo Albors, Vladimir Mazurov, Lutz Brusch, Andreas Deutsch, Elly M Tanaka, and Osvaldo Chara
- Subjects
regeneration ,modeling ,cell proliferation ,axolotl ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a high-proliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.
- Published
- 2016
- Full Text
- View/download PDF
10. Membrane identity and GTPase cascades regulated by toggle and cut‐out switches
- Author
-
Perla Del Conte‐Zerial, Lutz Brusch, Jochen C Rink, Claudio Collinet, Yannis Kalaidzidis, Marino Zerial, and Andreas Deutsch
- Subjects
cut‐out switch ,endocytosis ,GTPase ,mathematical model ,toggle switch ,Biology (General) ,QH301-705.5 ,Medicine (General) ,R5-920 - Abstract
Abstract Key cellular functions and developmental processes rely on cascades of GTPases. GTPases of the Rab family provide a molecular ID code to the generation, maintenance and transport of intracellular compartments. Here, we addressed the molecular design principles of endocytosis by focusing on the conversion of early endosomes into late endosomes, which entails replacement of Rab5 by Rab7. We modelled this process as a cascade of functional modules of interacting Rab GTPases. We demonstrate that intermodule interactions share similarities with the toggle switch described for the cell cycle. However, Rab5‐to‐Rab7 conversion is rather based on a newly characterized ‘cut‐out switch’ analogous to an electrical safety‐breaker. Both designs require cooperativity of auto‐activation loops when coupled to a large pool of cytoplasmic proteins. Live cell imaging and endosome tracking provide experimental support to the cut‐out switch in cargo progression and conversion of endosome identity along the degradative pathway. We propose that, by reconciling module performance with progression of activity, the cut‐out switch design could underlie the integration of modules in regulatory cascades from a broad range of biological processes.
- Published
- 2008
- Full Text
- View/download PDF
11. Correction: Quantification of nematic cell polarity in three-dimensional tissues
- Author
-
Fabián Segovia-Miranda, Hernán Morales-Navarrete, Frank Jülicher, Marino Zerial, Yannis Kalaidzidis, Benjamin M. Friedrich, Walter de Back, Kirstin Meyer, André Scholich, Simon Syga, Lutz Brusch, and Hidenori Nonaka
- Subjects
Cellular and Molecular Neuroscience ,Materials science ,Computational Theory and Mathematics ,Ecology ,Liquid crystal ,QH301-705.5 ,Modeling and Simulation ,Cell polarity ,Genetics ,Biophysics ,Biology (General) ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics - Abstract
[This corrects the article DOI: 10.1371/journal.pcbi.1008412.].
- Published
- 2021
12. Quantification of nematic cell polarity in three-dimensional tissues
- Author
-
Fabián Segovia-Miranda, Simon Syga, Yannis Kalaidzidis, Hernán Morales-Navarrete, Walter de Back, Marino Zerial, Hidenori Nonaka, Kirstin Meyer, Lutz Brusch, Benjamin M. Friedrich, Frank Jülicher, and André Scholich
- Subjects
0301 basic medicine ,Surface (mathematics) ,Physiology ,Cell Membranes ,Mice ,0302 clinical medicine ,Mathematical and Statistical Techniques ,Liquid crystal ,Animal Cells ,Liver tissue ,Cell polarity ,Medicine and Health Sciences ,Bile ,Biology (General) ,Anisotropy ,Tissues and Organs (q-bio.TO) ,Materials ,Ecology ,Physics ,Cell Polarity ,Condensed Matter Physics ,Living matter ,Body Fluids ,Liquid Crystals ,Order (biology) ,Computational Theory and Mathematics ,Liver ,Biological Physics (physics.bio-ph) ,Modeling and Simulation ,Physical Sciences ,Cellular Types ,Anatomy ,Cellular Structures and Organelles ,Research Article ,Cell Physiology ,Polarity (physics) ,QH301-705.5 ,Materials Science ,Material Properties ,FOS: Physical sciences ,Condensed Matter - Soft Condensed Matter ,Research and Analysis Methods ,Crystals ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,Sine Waves ,Genetics ,Animals ,Physics - Biological Physics ,Molecular Biology ,Cell Shape ,Ecology, Evolution, Behavior and Systematics ,Correction ,Biology and Life Sciences ,Kidneys ,Quantitative Biology - Tissues and Organs ,Cell Biology ,Renal System ,Models, Theoretical ,030104 developmental biology ,FOS: Biological sciences ,Biophysics ,Hepatocytes ,Soft Condensed Matter (cond-mat.soft) ,Multipole expansion ,Mathematical Functions ,030217 neurology & neurosurgery - Abstract
How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids., Author summary Cell polarity enables cells to carry out specific functions. Cell polarity is characterized by the formation of different plasma membrane domains, each with specific composition of proteins, phospholipids and cytoskeletal components. In simple epithelial sheets, or tube-like tissues such as kidney, epithelial cells are known to display a single apical domain, facing a lumenal cavity, and a single basal domain on the opposite side of the cell, facing a basal layer of extracellular matrix. This apico-basal polarity defines a vector of cell polarity, which provides a direction of fluid transport, e.g., from the basal side of the sheet to the lumen-facing side. In more complex, three-dimensional epithelial tissues, such as liver tissue with its complex network of blood-transporting sinusoids, the membrane domains of hepatocyte cells display more intricate patterns, including rings and antipodal pairs of apical membrane. Here, we develop a mathematical framework to precisely characterize and quantify complex polarity patterns. Thereby, we reveal ordered patterns of cell polarity that span across a liver lobule. Our new method builds on physical concepts originally developed for ordered phases of liquid crystals. It provides a versatile tool to characterize the spatial organization of a complex three-dimensional tissue.
- Published
- 2020
13. Liquid-crystal organization of liver tissue
- Author
-
Marino Zerial, Hernán Morales-Navarrete, Victor Koteliansky, Fabián Segovia-Miranda, André Scholich, Roman L. Bogorad, Lutz Brusch, Benjamin M. Friedrich, Yannis Kalaidzidis, Hidenori Nonaka, Frank Jülicher, Walter de Back, and Kirstin Meyer
- Subjects
Male ,0301 basic medicine ,Cell type ,Tissue architecture ,Mouse ,liquid crystal order ,QH301-705.5 ,Science ,3D tissue organization ,Physics of Living Systems ,liver ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,0302 clinical medicine ,Liquid crystal ,Liver tissue ,Cell polarity ,Animals ,Biology (General) ,Cells, Cultured ,030304 developmental biology ,0303 health sciences ,Microscopy, Confocal ,General Immunology and Microbiology ,Chemistry ,Integrin beta1 ,General Neuroscience ,Endothelial Cells ,General Medicine ,Capillaries ,Liquid Crystals ,Cell biology ,Mice, Inbred C57BL ,cell polarity ,030104 developmental biology ,Order (biology) ,Hepatocytes ,Medicine ,Female ,RNA Interference ,Algorithms ,030217 neurology & neurosurgery ,Research Article - Abstract
Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells as generally assumed, since silencing Integrin-ß1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.
- Published
- 2018
- Full Text
- View/download PDF
14. Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
- Author
-
Elly M. Tanaka, Lutz Brusch, Vladimir Mazurov, Fabian Rost, Aida Rodrigo Albors, Osvaldo Chara, and Andreas Deutsch
- Subjects
0301 basic medicine ,axolotl ,purl.org/becyt/ford/1 [https] ,0302 clinical medicine ,Neural Stem Cells ,Biology (General) ,biology ,General Neuroscience ,General Medicine ,Anatomy ,Cell cycle ,Neural stem cell ,Cell biology ,Neuroepithelial cell ,medicine.anatomical_structure ,Medicine ,Stem cell ,CIENCIAS NATURALES Y EXACTAS ,Computational and Systems Biology ,Blastema formation ,Spinal Cord Regeneration ,QH301-705.5 ,Otras Ciencias Biológicas ,Science ,General Biochemistry, Genetics and Molecular Biology ,Ciencias Biológicas ,03 medical and health sciences ,Axolotl ,Spatio-Temporal Analysis ,medicine ,Animals ,Regeneration ,purl.org/becyt/ford/1.6 [https] ,Ciencias Exactas ,General Immunology and Microbiology ,Cell growth ,Regeneration (biology) ,modeling ,Extremities ,Models, Theoretical ,biology.organism_classification ,Spinal cord ,Embryonic stem cell ,Ambystoma mexicanum ,030104 developmental biology ,Developmental Biology and Stem Cells ,cell proliferation ,MATHEMATICAL MODELING ,regeneration ,Other ,Research Advance ,Developmental biology ,SPINAL CORD ,030217 neurology & neurosurgery - Abstract
Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a high- proliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls., Facultad de Ciencias Exactas, Instituto de Física de Líquidos y Sistemas Biológicos
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.