1. Abstract 3554: Genomic landscape of acquired uniparental disomy in NCI PDMR patient derived xenograft models
- Author
-
Li Chen, Yvonne A. Evrard, Michelle Eugeni, Kelly Benauer, Amanda Peach, Michelle M. Gottholm Ahalt, James H. Doroshow, Shahanawaz Jiwani, Biswajit Das, Chris Karlovich, John Carter, Candace Mallow, Tara Grinnage-Pulley, Lindsay Dutko, Tiffanie L. Miner, Sergio Y. Alcoser, Dianne L. Newton, Devynn Breen, Thomas Forbes, Emily Delaney, Alyssa K. Chapman, Marianne Radzyminski, Anna J. Lee Fong, Shannon Uzelac, Chelsea McGlynn, Tomas Vilimas, Brandie A. Fullmer, Luis E. Romero, Gloryvee Rivera, Suzanne Borgel, Robin D. Harrington, Justine N. McCutcheon, Rajesh Patidar, Jesse Stottlemyer, Vishnuprabha R. Kannan, Nikitha Nair, Erin Cantu, Peng Wang, Melinda G. Hollingshead, Kelsey A. Conley, and Paul Williams
- Subjects
Cancer Research ,Haplotype ,Chromosome ,Cancer ,Biology ,medicine.disease ,Uniparental disomy ,Loss of heterozygosity ,Clear cell renal cell carcinoma ,Oncology ,Cancer research ,Carcinoma ,medicine ,Exome sequencing - Abstract
Background: Acquired Uniparental Disomy (aUPD) is relatively common in cancer. Occurrence of aUPD is more frequent in some tumor histologies (e.g., serous ovarian, colorectal) and may be relevant for choice of therapy. The Patient-Derived Models Repository (PDMR; https://pdmr.cancer.gov) developed by The National Cancer Institute (NCI) includes patient-derived xenograft (PDX) models from multiple tumor histologies with different passages and lineages. The associated clinical annotation and genomic data make it possible to assess the prevalence of aUPD in the PDMR cohort and the stability of aUPD in different passages and lineages within a PDX model. Methods: High tumor purity in the PDX specimens (after removal of mouse reads representing the stroma) enabled highly accurate assessment of loss of heterozygosity (LOH). Variants called by GATK Haplotype caller from whole exome sequencing (WES) data were used to identify segments of homozygosity using BCFtools/RoH (runs of homozygosity). The RoH segments were then intersected with the bed file for chromosome arms to get %LOH at the arm level. If %LOH on a chromosome arm was >90%, we considered the sample to have aUPD at the arm level. WES was also used to look for associations between DNA damage repair (DDR) pathway alterations and aUPD. Results: We made the following observations: a) aUPD was observed most frequently in chr18q (75/427, 17.6%) and chr3p (69/427, 16%) of PDX models; b) aUPD was observed more frequently in certain tumor histologies, e.g., clear cell renal cell carcinoma (6/8), small cell lung cancer (3/4) and non-small cell lung cancer (25/38); c) extensive aUPD was observed in 4 PDMR models (>50% of evaluated chromosome arms in these models have aUPD); d) aUPD was not observed in some tumor histologies, i.e., synovial sarcoma, uterine endometrioid carcinoma; e) in the vast majority of PDMR models (>90%), aUPD is maintained faithfully across lineages and through multiple passaging; f) subclonal aUPD events were observed in some models across different lineages; g) significant enrichment of double strand DNA break repair (DSBR) pathway alterations was observed in PDMR models without aUPD (p=0.0007, Fisher's exact test) suggesting defects in DSBR are not associated with aUPD; and h) aUPD was rarely observed in MSI-high models (1/30) suggesting mutual exclusivity of mismatch repair (MMR) pathway defects and aUPD. Conclusion: We observed a relatively high frequency of UPD in the PDMR models (at least 1 arm of a chromosome). UPD was more frequently observed in specific chromosomal arms. The frequency of aUPD was higher in some tumor histologies and absent in others. aUPD was stably maintained across passages and lineages, although some heterogeneity was observed. Our data suggest aUPD is not associated with defects in DSBR and MMR pathways. Preclinical drug studies using NCI PDMR models may suggest appropriate therapeutic options for cancers with aUPD. Citation Format: Rajesh Patidar, Li Chen, Chris A. Karlovich, Biswajit Das, Yvonne A. Evrard, Tomas Vilimas, Justine N. McCutcheon, Amanda L. Peach, Nikitha V. Nair, Thomas D. Forbes, Brandie A. Fullmer, Anna J. Lee Fong, Luis E. Romero, Alyssa K. Chapman, Kelsey A. Conley, Robin D. Harrington, Shahanawaz S. Jiwani, Peng Wang, Michelle M. Gottholm Ahalt, Erin N. Cantu, Gloryvee Rivera, Lindsay M. Dutko, Kelly M. Benauer, Vishnuprabha R. Kannan, Suzanne D. Borgel, John P. Carter, Jesse M. Stottlemyer, Tiffanie L. Miner, Devynn R. Breen, Emily T. Delaney, Chelsea A. McGlynn, Candace N. Mallow, Marianne Radzyminski, Shannon N. Uzelac, Sergio Y. Alcoser, Tara L. Grinnage-Pulley, Michelle A. Eugeni, Dianne L. Newton, Melinda G. Hollingshead, Paul M. Williams, James H. Doroshow. Genomic landscape of acquired uniparental disomy in NCI PDMR patient derived xenograft models [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3554.
- Published
- 2020