1. Sedimentary response to sea level and climate changes in the inner sea of Maldives carbonate platform over the past 30 kyr
- Author
-
Xiang Su, Yiping Yang, Rong Xiang, and Linggang Tang
- Subjects
010506 paleontology ,biology ,Terrigenous sediment ,Carbonate platform ,Stratigraphy ,Paleontology ,010502 geochemistry & geophysics ,biology.organism_classification ,01 natural sciences ,Foraminifera ,Sedimentary depositional environment ,Sea surface temperature ,Oceanography ,Glacial period ,Ecology, Evolution, Behavior and Systematics ,Holocene ,Sea level ,Geology ,0105 earth and related environmental sciences - Abstract
We applied AMS 14C dates, Mg/Ca estimated sea surface temperature (SST), planktonic foraminiferal abundance, coarse component and X-ray diffraction mineral composition analyses for an International Ocean Discovery Program (IODP) sediment Hole U1467C in the Maldives inner sea, to reveal factors that affected the depositional process in the Maldives inner sea over the past 30 kyr. We found that the linear sedimentation rate (LSR) in Holocene (6.8 cm/kyr) was obviously higher than that in glacial period (3.45 cm/kyr); the average SST during the Holocene was 2–3°C higher than that in glacial stage. High abundance of planktonic foraminifera occurred during the glacial period, which was consistent with the variation of pelagic biogenic component. Reef-sourced material showed apparent high percentage during the Holocene (43.5%), in contrast to the low values during the glacial stage (20.7%). Terrigenous matter, only accounting for a small percentage in carbonate platform, was relatively high during the glacial period than that in the Holocene. We therefore conclude that reef-sourced material, dominated in the glacial-interglacial sediment sources, was mainly affected by sea level and climate changes. During glacial stage, sea level low-stand and weakened weathering in Maldives limited the input of the eroded material into the inner sea, resulting in low LSR; while the Holocene high sea level accompanied with rapid growth of the reef atoll and enhanced weathering, brought more reef-sourced material to the inner sea, leading to increased LSR and lowered abundance of planktonic foraminifera. The sea level and climate-controlled reef-sourced material changes are the key to understand the sedimentary process of the Maldives inner sea. Our study will shed some light on the evolution of glacial-interglacial sedimentary process of carbonate platform.
- Published
- 2021