1. Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1)
- Author
-
Pamela J. Russell, Bradley J. Walsh, Brian W.C. Tse, Mei-Chun Yeh, Varinder Jeet, Douglas Campbell, Nicholas L. Fletcher, Marianna Volpert, Chelsea Stewart, Maria E. Lund, Kristofer J. Thurecht, Kamil A. Sokolowski, Colleen C. Nelson, and Zachary H. Houston
- Subjects
0301 basic medicine ,lcsh:Medical physics. Medical radiology. Nuclear medicine ,Biodistribution ,medicine.medical_specialty ,lcsh:R895-920 ,Radionuclide therapy ,MIL-38 ,03 medical and health sciences ,Prostate cancer ,0302 clinical medicine ,Medicine ,Radiology, Nuclear Medicine and imaging ,Original Research ,biology ,business.industry ,Miltuximab® ,Cancer ,medicine.disease ,Imaging agent ,030104 developmental biology ,030220 oncology & carcinogenesis ,Cancer research ,biology.protein ,Histopathology ,Antibody ,business ,Ex vivo ,Glypican-1 - Abstract
PurposeChimeric antibody Miltuximab®, a human IgG1 engineered from the parent antibody MIL-38, is in clinical development for solid tumour therapy. Miltuximab® targets glypican-1 (GPC-1), a cell surface protein involved in tumour growth, which is overexpressed in solid tumours, including prostate cancer (PCa). This study investigated the potential of89Zr-labelled Miltuximab® as an imaging agent, and177Lu-labelled Miltuximab® as a targeted beta therapy, in a mouse xenograft model of human prostate cancer.MethodsMale BALB/c nude mice were inoculated subcutaneously with GPC-1-positive DU-145 PCa cells. In imaging and biodistribution studies, mice bearing palpable tumours received (a) 2.62 MBq [89Zr]Zr-DFO-Miltuximab® followed by PET-CT imaging, or (b) 6 MBq [177Lu]Lu-DOTA-Miltuximab® by Cerenkov imaging, and ex vivo assessment of biodistribution. In an initial tumour efficacy study, mice bearing DU-145 tumours were administered intravenously with 6 MBq [177Lu]Lu-DOTA-Miltuximab® or control DOTA-Miltuximab® then euthanised after 27 days. In a subsequent survival efficacy study, tumour-bearing mice were given 3 or 10 MBq of [177Lu]Lu-DOTA-Miltuximab®, or control, and followed up to 120 days.ResultsAntibody accumulation in DU-145 xenografts was detected by PET-CT imaging using [89Zr]Zr-DFO-Miltuximab® and confirmed by Cerenkov luminescence imaging post injection of [177Lu]Lu-DOTA-Miltuximab®. Antibody accumulation was higher (% IA/g) in tumours than other organs across multiple time points. A single injection with 6 MBq of [177Lu]Lu-DOTA-Miltuximab® significantly inhibited tumour growth as compared with DOTA-Miltuximab® (control). In the survival study, mice treated with 10 MBq [177Lu]Lu-DOTA-Miltuximab® had significantly prolonged survival (mean 85 days) versus control (45 days), an effect associated with increased cancer cell apoptosis. Tissue histopathology assessment showed no abnormalities associated with [177Lu]Lu-DOTA-Miltuximab®, in line with other observations of tolerability, including body weight stability.ConclusionThese findings demonstrate the potential utility of Miltuximab® as a PET imaging agent ([89Zr]Zr-DFO-Miltuximab®) and a beta therapy ([177Lu]Lu-DOTA-Miltuximab®) in patients with PCa or other GPC-1 expressing tumours.
- Published
- 2020
- Full Text
- View/download PDF