1. Widespread signatures of natural selection across human complex traits and functional genomic categories
- Author
-
Luke R. Lloyd-Jones, Jian Yang, Huanwei Wang, Loic Yengo, Angli Xue, Zhili Zheng, Yang Wu, Michael E. Goddard, Longda Jiang, Naomi R. Wray, Peter M. Visscher, Jian Zeng, and Kathryn E. Kemper
- Subjects
0301 basic medicine ,Multifactorial Inheritance ,Science ,General Physics and Astronomy ,Genomics ,Genome-wide association study ,Biology ,Quantitative trait ,Genome-wide association studies ,Models, Biological ,Polymorphism, Single Nucleotide ,General Biochemistry, Genetics and Molecular Biology ,Article ,Evolution, Molecular ,03 medical and health sciences ,Bayes' theorem ,0302 clinical medicine ,Humans ,Selection, Genetic ,Selection (genetic algorithm) ,Multidisciplinary ,Natural selection ,Genome ,Human evolutionary genetics ,Selection coefficient ,Genetic Variation ,Bayes Theorem ,General Chemistry ,Genetic architecture ,030104 developmental biology ,Phenotype ,Evolutionary biology ,030217 neurology & neurosurgery ,Genome-Wide Association Study - Abstract
Understanding how natural selection has shaped genetic architecture of complex traits is of importance in medical and evolutionary genetics. Bayesian methods have been developed using individual-level GWAS data to estimate multiple genetic architecture parameters including selection signature. Here, we present a method (SBayesS) that only requires GWAS summary statistics. We analyse data for 155 complex traits (n = 27k–547k) and project the estimates onto those obtained from evolutionary simulations. We estimate that, on average across traits, about 1% of human genome sequence are mutational targets with a mean selection coefficient of ~0.001. Common diseases, on average, show a smaller number of mutational targets and have been under stronger selection, compared to other traits. SBayesS analyses incorporating functional annotations reveal that selection signatures vary across genomic regions, among which coding regions have the strongest selection signature and are enriched for both the number of associated variants and the magnitude of effect sizes., Methods to study how natural selection shapes genetic architecture of complex traits rely on individual level genome-wide association study (GWAS) data. Here, the authors present a Bayesian method using GWAS summary statistics to study genetic architecture and apply this to 155 complex traits.
- Published
- 2021