73 results on '"Krieger-Liszkay A"'
Search Results
2. Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions
- Author
-
Manuela Kramer, Manuel Twachtmann, Melvin Rodriguez-Heredia, Laura Mosebach, Guy Hanke, Giovanni Finazzi, Anja Krieger-Liszkay, Francesco Saccon, Christopher D. P. Duffy, Robert J. Knell, School of Biochemistry and Chemistry, Queen Mary University of London, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Universität Osnabrück - Osnabrück University, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Light Photosynthesis & Metabolism (Photosynthesis), Physiologie cellulaire et végétale (LPCV), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Funding from the Deutsche Forschungsgemeinschaft through (Project 2 in the Collaborative Research Center (SFB) 944) and BBSRC (BB/R004838/1), Bayer Science and Education foundation (F-2016-BS-0555), ANR-10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010), ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), ANR-10-LABX-0040,SPS,Saclay Plant Sciences(2010), ANR-10-INTB-1501,BioPol folders,Repliement et stabilisation par des polymeres amphiphiles biocompatibles de fragments scFv marqueurs cellulaires de cancers.(2010), European Project: 833184, ChloroMito, Institute for Plant Biology and Biotechnology,University of Münster, and Department of Plant Physiology, University of Osnabrück
- Subjects
0106 biological sciences ,0301 basic medicine ,inorganic chemicals ,Chloroplasts ,QH301-705.5 ,Photoperiod ,Science ,thylakoid ,Arabidopsis ,Electrons ,Photosynthesis ,01 natural sciences ,environment and public health ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,chloroplast ,Oxidoreductase ,NADPH ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,electron transport ,Biology (General) ,Ferredoxin ,chemistry.chemical_classification ,plant biology ,photosynthesis ,General Immunology and Microbiology ,biology ,Chemistry ,Arabidopsis Proteins ,General Neuroscience ,Biological Transport ,General Medicine ,Immunogold labelling ,biology.organism_classification ,ferredoxin ,Electron transport chain ,Chloroplast ,Ferredoxin-NADP Reductase ,030104 developmental biology ,Thylakoid ,A. thaliana ,Biophysics ,Medicine ,bacteria ,010606 plant biology & botany ,Research Article - Abstract
International audience; During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.
- Published
- 2021
3. Structural insights into photosystem II assembly
- Author
-
Benjamin D. Engel, Madeline Möller, Till Rudack, Emad Tajkhorshid, Aaron Chan, Raphael Stoll, Julian David Langer, Jan M. Schuller, Pasqual Liauw, Marc M. Nowaczyk, Stefan Bohn, Sandra K. Schuller, Anja Krieger-Liszkay, Oliver Arnolds, Jure Zabret, Jakob Meier-Credo, Ruhr-Universität Bochum [Bochum], Max-Planck-Institut für Biochemie = Max Planck Institute of Biochemistry (MPIB), Max-Planck-Gesellschaft, Max Planck Institute of Biophysics [Frankfurt am Main] (MPIBP), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Helmholtz Zentrum München = German Research Center for Environmental Health, Max Planck Institute of Biochemistry (MPIB), and Helmholtz-Zentrum München (HZM)
- Subjects
0106 biological sciences ,0301 basic medicine ,assembly factors ,Photosystem II ,Thermosynechococcus ,Plant Science ,macromolecular substances ,Oxygen-evolving complex ,01 natural sciences ,Article ,03 medical and health sciences ,Bacterial Proteins ,Structural motif ,Bicarbonate binding ,bicarbonate binding ,Photosystem ,reactive oxygen species ,photosynthesis ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,Photosystem II Protein Complex ,Active site ,food and beverages ,protection mechanisms ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,030104 developmental biology ,photoactivation ,oxygen evolving complex ,Biophysics ,biology.protein ,cryo-EM ,Photosynthetic bacteria ,Biogenesis ,photosystem II biogenesis ,010606 plant biology & botany - Abstract
Biogenesis of photosystem II (PSII), nature’s water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 A resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction. Photosystems need auxiliary proteins to assist their assembly. Cryo-electron microscopy of a cyanobacterial photosystem II assembly intermediate at 2.94 A reveals mechanisms protecting against photodamage during vulnerable stages of biogenesis.
- Published
- 2021
4. How to build a water-splitting machine: structural insights into photosystem II assembly
- Author
-
Aaron Chan, Anja Krieger-Liszkay, Pasqual Liauw, Emad Tajkhorshid, Till Rudack, Stefan Bohn, Julian David Langer, Sandra K. Schuller, Jakob Meier-Credo, Jan M. Schuller, Madeline Möller, Raphael Stoll, Benjamin D. Engel, Jure Zabret, Oliver Arnolds, and Marc M. Nowaczyk
- Subjects
biology ,Photosystem II ,Chemistry ,Ligand ,food and beverages ,Active site ,macromolecular substances ,Photochemistry ,Acceptor ,biology.protein ,Water splitting ,Photosynthetic bacteria ,Structural motif ,Biogenesis - Abstract
Biogenesis of photosystem II (PSII), nature’s water splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate with 2.94 A resolution. It contains three assembly factors (Psb27, Psb28, Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace bicarbonate with glutamate as a ligand of the non-heme iron, a structural motif found in reaction centers of non-oxygenic photosynthetic bacteria. These results reveal novel mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water splitting reaction. One Sentence Highlight The high-resolution Cryo-EM structure of the photosystem II assembly intermediate PSII-I reveals how nature’s water splitting catalyst is assembled, protected and prepared for photoactivation by help of the three assembly factors Psb27, Psb28 and Psb34.
- Published
- 2020
5. Over Expression of the Cyanobacterial Pgr5-Homologue Leads to Pseudoreversion in a Gene Coding for a Putative Esterase in Synechocystis 6803
- Author
-
Hanan Schoffman, Ketty Margulis, Omer Murik, Hagar Lis, Nir Keren, Ginga Shimakawa, Anja Krieger-Liszkay, Hagit Zer, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-17-EURE-0007,SPS-GSR,Ecole Universitaire de Recherche de Sciences des Plantes de Paris-Saclay(2017)
- Subjects
0106 biological sciences ,0301 basic medicine ,carbon metabolism ,[SDV]Life Sciences [q-bio] ,Mutant ,medicine.disease_cause ,01 natural sciences ,cyanobacteria ,Article ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,medicine ,electron transport ,lcsh:Science ,Gene ,Ecology, Evolution, Behavior and Systematics ,Photosystem ,Mutation ,photosynthesis ,biology ,Strain (chemistry) ,Chemistry ,Synechocystis ,Wild type ,Paleontology ,biology.organism_classification ,Phenotype ,Cell biology ,030104 developmental biology ,Space and Planetary Science ,redox ,lcsh:Q ,010606 plant biology & botany - Abstract
Pgr5 proteins play a major direct role in cyclic electron flow paths in plants and eukaryotic phytoplankton. The genomes of many cyanobacterial species code for Pgr5-like proteins but their function is still uncertain. Here, we present evidence that supports a link between the Synechocystis sp. PCC6803 Pgr5-like protein and the regulation of intracellular redox balance. The knockout strain, pgr5KO, did not display substantial phenotypic response under our experimental conditions, confirming results obtained in earlier studies. However, the overexpression strain, pgr5OE, accumulated 2.5-fold more chlorophyll than the wild type and displayed increased content of photosystems matching the chlorophyll increase. As a result, electron transfer rates through the photosynthetic apparatus of pgr5OE increased, as did the amount of energy stored as glycogen. While, under photoautotrophic conditions, this metabolic difference had only minor effects, under mixotrophic conditions, pgr5OE cultures collapsed. Interestingly, this specific phenotype of pgr5OE mutants displayed a tendency for reverting, and cultures which previously collapsed in the presence of glucose were now able to survive. DNA sequencing of a pgr5OE strain revealed a second site suppression mutation in slr1916, a putative esterase associated with redox regulation. The phenotype of the slr1916 knockout is very similar to that of the strain reported here and to that of the pmgA regulator knockout. These data demonstrate that, in Synechocystis 6803, there is strong selection against overexpression of the Pgr5-like protein. The pseudoreversion event in a gene involved in redox regulation suggests a connection of the Pgr5-like protein to this network.
- Published
- 2020
6. Additive effects of metal excess and superoxide, a highly toxic mixture in bacteria
- Author
-
Yoshiharu Yamaichi, Anja Krieger-Liszkay, Marion Babot, Reem Tambosi, Soufian Ouchane, Anne Durand, Anne Soisig Steunou, Marie-Line Bourbon, Sylviane Liotenberg, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Adaptation bactérienne aux changements environnementaux (BACADA), Département Microbiologie (Dpt Microbio), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Intégrité du génome et de la polarité cellulaire chez la bactérie (EQYY), and Département Biologie des Génomes (DBG)
- Subjects
lcsh:Biotechnology ,[SDV]Life Sciences [q-bio] ,Mutant ,Bioengineering ,Bacillus subtilis ,medicine.disease_cause ,Applied Microbiology and Biotechnology ,Biochemistry ,Superoxide dismutase ,03 medical and health sciences ,chemistry.chemical_compound ,Superoxides ,Metals, Heavy ,lcsh:TP248.13-248.65 ,medicine ,Escherichia coli ,Research Articles ,Burkholderiales ,030304 developmental biology ,2. Zero hunger ,0303 health sciences ,biology ,030306 microbiology ,Chemistry ,Superoxide ,Superoxide Dismutase ,biology.organism_classification ,6. Clean water ,Pseudomonas putida ,13. Climate action ,biology.protein ,Efflux ,Bacteria ,Biotechnology ,Research Article - Abstract
Summary Heavy metal contamination is a serious environmental problem. Understanding the toxicity mechanisms may allow to lower concentration of metals in the metal‐based antimicrobial treatments of crops, and reduce metal content in soil and groundwater. Here, we investigate the interplay between metal efflux systems and the superoxide dismutase (SOD) in the purple bacterium Rubrivivax gelatinosus and other bacteria through analysis of the impact of metal accumulation. Exposure of the Cd2+‐efflux mutant ΔcadA to Cd2+ caused an increase in the amount and activity of the cytosolic Fe‐Sod SodB, thereby suggesting a role of SodB in the protection against Cd2+. In support of this conclusion, inactivation of sodB gene in the ΔcadA cells alleviated detoxification of superoxide and enhanced Cd2+ toxicity. Similar findings were described in the Cu+‐efflux mutant with Cu+. Induction of the Mn‐Sod or Fe‐Sod in response to metals in other bacteria, including Escherichia coli, Pseudomonas aeruginosa, Pseudomonas putida, Vibrio cholera and Bacillus subtilis, was also shown. Both excess Cd2+ or Cu+ and superoxide can damage [4Fe‐4S] clusters. The additive effect of metal and superoxide on the [4Fe‐4S] could therefore explain the hypersensitive phenotype in mutants lacking SOD and the efflux ATPase. These findings underscore that ROS defence system becomes decisive for bacterial survival under metal excess., Superoxide detoxification system became determinant for bacterial survival under metal stress in bacteria. Targeting the ROS defense system together with the metal efflux systems may allow lowering the concentration of metals in the metal‐based antimicrobial treatments in agriculture and farming.
- Published
- 2020
7. Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer
- Author
-
Ginga Shimakawa, Pierre Sétif, Anja Krieger-Liszkay, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE05-0026,ReCyFuel,Régulations de la photosynthèse et production de biofuels par les cyanobactéries(2016), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Institut de Biologie Intégrative de la Cellule (I2BC), and Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay
- Subjects
0106 biological sciences ,0301 basic medicine ,Photosystem I ,Cytochrome ,Light ,[SDV]Life Sciences [q-bio] ,Electron donor ,Plant Science ,Photochemistry ,Photosynthesis ,01 natural sciences ,Biochemistry ,Electron Transport ,03 medical and health sciences ,chemistry.chemical_compound ,Leaf senescence ,Plastocyanin ,Ferredoxin ,P700 ,biology ,Photosystem I Protein Complex ,Chemistry ,Cell Biology ,General Medicine ,Electron transport chain ,Plant Leaves ,030104 developmental biology ,Spectrophotometry ,Cytochrome c6 ,biology.protein ,010606 plant biology & botany - Abstract
In photosynthesis research, non-invasive in vivo spectroscopic analyses have been used as a practical tool for studying photosynthetic electron transport. Klas-NIR spectrophotometer has been recently developed by Klughammer and Schreiber (Photosynth Res 128:195-214, 2016) for in vivo measurements of redox changes of P700, plastocyanin (Pcy) and ferredoxin (Fd). Here we show examples using the Klas-NIR spectrophotometer for the evaluation of the redox states and quantities of these components in plant leaves and cyanobacterial suspensions. The redox poise under light of the electron transport components is different in leaves from higher plants compared with cyanobacteria. During a short illumination with an actinic light, P700, Pcy, and Fd are kept reduced in barley leaves but are oxidized in cyanobacteria. During far-red light illumination, P700 and Pcy are mostly oxidized in the leaves but are partially kept reduced in cyanobacteria. In the cyanobacterium, Thermosynechococcus elongatus, which has no Pcy but uses cytochrome c6 (cyt c6) as the electron donor to photosystem I, a cyt c6 signal was detected in vivo. To show the potential of Klas-NIR spectrophotometer for studying different developmental stages of a leaf, we performed measurements on fully mature and early senescing barley leaves. Pcy content in leaves decreased during senescence at an early stage. The Pcy loss was quantitatively analyzed using Klas-NIR spectrophotometer, giving absolute ratios of Pcy to PSI of 2.5 and 1.6 in younger and older leaves, respectively. For quantification of the signals in vivo, in vitro data (Sétif et al. in Photosynth Res142:307-319, 2019) obtained with Klas-NIR spectrophotometer were used.
- Published
- 2020
8. The non-photochemical quenching protein LHCSR3 prevents oxygen-dependent photoinhibition in Chlamydomonas reinhardtii
- Author
-
Thomas Roach, Chae Sun Na, Anja Krieger-Liszkay, Wolfgang Stöggl, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,Chlorophyll ,Photoinhibition ,Light ,Physiology ,Evolution ,[SDV]Life Sciences [q-bio] ,Light-Harvesting Protein Complexes ,Chlamydomonas reinhardtii ,Plant Science ,macromolecular substances ,Photosynthesis ,Stress ,01 natural sciences ,03 medical and health sciences ,Carboniferous ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Reactive oxygen species ,Quenching (fluorescence) ,biology ,Chemistry ,AcademicSubjects/SCI01210 ,Non-photochemical quenching ,Wild type ,Photosystem II Protein Complex ,food and beverages ,biology.organism_classification ,Research Papers ,Oxygen ,Electrophile ,Thylakoid ,Biophysics ,qE ,Non-Photochemical Quenching ,Reactive Oxygen Species ,010606 plant biology & botany ,Photosynthesis and Metabolism - Abstract
At high O2 tensions, as encountered prehistorically, Chlamydomonas reinhardtii elevated levels of NPQ-related proteins and LHCSR3 had an important function in protecting PSI., Non-photochemical quenching (NPQ) helps dissipate surplus light energy, preventing formation of reactive oxygen species (ROS). In Chlamydomonas reinhardtii, the thylakoid membrane protein LHCSR3 is involved in pH-dependent (qE-type) NPQ, lacking in the npq4 mutant. Preventing PSII repair revealed that npq4 lost PSII activity faster than the wild type (WT) in elevated O2, while no difference between strains was observed in O2-depleted conditions. Low Fv/Fm values remained 1.5 h after moving cells out of high light, and this qH-type quenching was independent of LHCSR3 and not accompanied by losses of maximum PSII activity. Culturing cells in historic O2 atmospheres (30–35%) increased the qE of cells, due to increased LHCSR1 and PsbS levels, and LHCSR3 in the WT, showing that atmospheric O2 tensions regulate qE capacity. Colony growth of npq4 was severely restricted at elevated O2, and npq4 accumulated more reactive electrophile species (RES) than the WT, which could damage PSI. Levels of PsaA (PSI) were lower in npq4 grown at 35% O2, while PsbA (PSII) levels remained stable. We conclude that even at high O2 concentrations, the PSII repair cycle is sufficient to maintain net levels of PSII. However, LHCSR3 has an important function in protecting PSI against O2-mediated damage, such as via RES.
- Published
- 2020
9. Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy
- Author
-
Pierre Sétif, Ginga Shimakawa, Anja Krieger-Liszkay, Chikahiro Miyake, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE05-0026,ReCyFuel,Régulations de la photosynthèse et production de biofuels par les cyanobactéries(2016)
- Subjects
0106 biological sciences ,0301 basic medicine ,Cyanobacteria ,[SDV]Life Sciences [q-bio] ,Biophysics ,chemistry.chemical_element ,Electron donor ,Photosystem I ,Photosynthesis ,01 natural sciences ,Biochemistry ,Oxygen ,Nonheme Iron Proteins ,Electron Transport ,03 medical and health sciences ,chemistry.chemical_compound ,NADPH fluorescence ,Bacterial Proteins ,Ferredoxin ,biology ,Chemistry ,Synechocystis ,NDH-1L complex ,Cell Biology ,biology.organism_classification ,Fluorescence ,Cyclic electron flow ,Kinetics ,Spectrometry, Fluorescence ,030104 developmental biology ,Mutation ,Recombination reactions ,KLAS-NIR spectrophotometer ,NADP ,010606 plant biology & botany - Abstract
International audience; Flavodiiron proteins (FDPs) of photosynthetic organisms play a photoprotective role by reducing oxygen to water and thus avoiding the accumulation of excess electrons on the photosystem I (PSI) acceptor side under stress conditions. In Synechocystis sp. PCC 6803 grown under high CO 2 , both FDPs Flv1 and Flv3 are indispensable for oxygen reduction. We performed a detailed in vivo kinetic study of wild-type (WT) and flv1/3 strains of Synechocystis using light-induced NADPH fluorescence and near-infrared absorption of ironsulfur clusters from ferredoxin and the PSI acceptors (F A F B), collectively named FeS. These measurements were performed under conditions where the Calvin-Benson cycle is inactive or poorly activated. Under such conditions, the NADPH decay following a short illumination decays in parallel in both strains and exhibits a time lag which is correlated to the presence of reduced FeS. On the contrary, reduced FeS decays much faster in WT than in flv1/3 (13 vs 2 s-1). These data unambiguously show that reduced ferredoxin, or possibly reduced F A F B , is the direct electron donor to the Flv1/Flv3 heterodimer. Evidences for large reduction of (F A F B) and recombination reactions within PSI were also provided by near-infrared absorption. Mutants lacking either the NDH1-L complex, the homolog of complex I of respiration, or the Pgr5 protein show no difference with WT in the oxidation of reduced FeS following a short illumination. These observations question the participation of a significant cyclic electron flow in cyanobacteria during the first seconds of the induction phase of photosynthesis.
- Published
- 2020
10. Evolutive differentiation between alga- and plant-type plastid terminal oxidase: study of plastid terminal oxidase PTOX isoforms in Marchantia polymorpha
- Author
-
Marine Messant, François Perreau, Chikahiro Miyake, Ginga Shimakawa, Anja Krieger-Liszkay, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Jean-Pierre Bourgin (IJPB), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Kobe University, JSPS oversea research fellowship (201860126), ANR-17-EURE-0007,SPS-GSR,Ecole Universitaire de Recherche de Sciences des Plantes de Paris-Saclay(2017), and ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010)
- Subjects
Hepatophyta ,0106 biological sciences ,0301 basic medicine ,Gene isoform ,plastid terminal oxidase ,Photosystem II ,[SDV]Life Sciences [q-bio] ,Photosynthetic Reaction Center Complex Proteins ,Marchantia polymorpha ,Biophysics ,Chlamydomonas reinhardtii ,Plastoquinone ,01 natural sciences ,Biochemistry ,Plastid terminal oxidase ,03 medical and health sciences ,chemistry.chemical_compound ,chlororphyll fluorescence ,Chlorophyll fluorescence ,P700 ,biology ,Chemistry ,plastoquinone pool ,Cell Biology ,biology.organism_classification ,030104 developmental biology ,Mutation ,P700 absorption ,Oxidoreductases ,Oxidation-Reduction ,010606 plant biology & botany - Abstract
International audience; The liverwort Marchantia polymorpha contains two isoforms of the plastid terminal oxidase (PTOX), an enzyme that catalyzes the reduction of oxygen to water using plastoquinol as substrate. Phylogenetic analyses showed that one isoform, here called MpPTOXa, is closely related to isoforms occurring in plants and some algae, while the other isoform, here called MpPTOXb, is closely related to the two isoforms occurring in Chlamydomonas reinhardtii. Mutants of each isoform were created in Marchantia polymorpha using CRISPR/Cas9 technology. While no obvious phenotype was found for these mutants, chlorophyll fluorescence analyses demonstrated that the plastoquinone pool was in a higher reduction state in both mutants. This was visible at the level of fluorescence measured in dark-adapted material and by post illumination fluorescence rise. These results suggest that both isoforms have a redundant function. However, when P700 oxidation and re-reduction was studied, differences between these two isoforms were observed. Furthermore, the mutant affected in MpPTOXb showed a slight alteration in the pigment composition, a higher non-photochemical quenching and a slightly lower electron transport rate through photosystem II. These differences may be explained either by differences in the enzymatic activities or by different activities attributed to preferential involvement of the two PTOX isoforms to either linear or cyclic electron flow.
- Published
- 2020
11. Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress
- Author
-
Sergio González-Pérez, Inmaculada Sánchez-Vicente, Ascensión Corrales, Álvaro Sánchez-Corrionero, Juan B. Arellano, Oscar Lorenzo, Anja Krieger-Liszkay, Ministerio de Economía y Competitividad (España), Junta de Castilla y León, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cell death ,0106 biological sciences ,0301 basic medicine ,Chloroplasts ,Light ,Physiology ,[SDV]Life Sciences [q-bio] ,Zeaxanthin epoxidase ,Arabidopsis ,Plant Science ,01 natural sciences ,03 medical and health sciences ,Stress, Physiological ,Arabidopsis thaliana ,JAZ repressors ,Jasmonate ,AAA-ATPase ,Chlorophyll fluorescence ,Cell Death ,Singlet Oxygen ,biology ,Singlet oxygen ,2409 Genética ,Arabidopsis Proteins ,aba1 ,Wild type ,food and beverages ,Plants, Genetically Modified ,biology.organism_classification ,3. Good health ,Cell biology ,Oxygen ,Chloroplast ,Spectrometry, Fluorescence ,030104 developmental biology ,Biochemistry ,Thylakoid ,Mutation ,biology.protein ,2414 Microbiología ,Oxidoreductases ,Chloroplast rupture ,Agronomy and Crop Science ,010606 plant biology & botany - Abstract
44 páginas, 6 figuras, 1 tabla. -- The definitive version is available at http://www.elsevier.com, The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen (1O2) and activating 1O2-mediated cell death. Thylakoids of aba1 produced twice as much 1O2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. 1O2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of 1O2 generation in aba1. Up-regulation of the 1O2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct 1O2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of 1O2-mediated cell death. In conclusion, aba1 may serve as an alternative model to other 1O2-overproducing mutants of Arabidopsis for investigating 1O2-mediated cell death., This work was supported by MINECO (AGL2013-41363-R, ERDF) and Junta de Castilla y León (CSI002A10-2 and CSI083U16, ERDF) to J.B.A., ERC.KBBE.2012.1.1-01 (EcoSeed-311840) to Ó.L and A. K.-L., and MINECO (BIO2014-57107-R) and Junta de Castilla y León (SA239U13 and SA093U16) to Ó.L.
- Published
- 2017
12. Electron transport pathways in isolated chromoplasts from Narcissus pseudonarcissus L
- Author
-
Magda Grabsztunowicz, Risa Mutoh, Pierre Sétif, Anja Krieger-Liszkay, Frauke Baymann, Genji Kurisu, Paula Mulo, Peter Beyer, University of Turku, Bioénergétique et Ingénierie des Protéines (BIP ), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institute for Protein Research [Osaka], Osaka University [Osaka], Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, University of Freiburg [Freiburg], Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Molecular Plant Biology, University of Turku, and Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Photosynthetic reaction centre ,PTOX ,Cytochrome ,[SDV]Life Sciences [q-bio] ,Photosynthetic Reaction Center Complex Proteins ,chromorespiration ,Plastoquinone ,narcissus pseudonarcissus ,Plant Science ,Biology ,01 natural sciences ,Plastid terminal oxidase ,NDH ,Electron Transport ,03 medical and health sciences ,chemistry.chemical_compound ,Genetics ,Plastids ,Cytochrome b6f complex ,Photosynthesis ,Ferredoxin ,Chlorophyll A ,Narcissus ,Chromoplast ,Cell Biology ,Chlororespiration ,Electron transport chain ,030104 developmental biology ,chemistry ,biology.protein ,Biophysics ,Ferredoxins ,Oxidation-Reduction ,electro transfer chain ,NADP ,010606 plant biology & botany - Abstract
International audience; During daffodilflower development,chloroplasts differentiate into photosynthetically inactive chromoplasts, which have lostfunctional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase(PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6fcomplex, ATP synthase and several isoforms of ferredoxin-NADP+oxidoreductase (FNR) and of ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6fcomplex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors forthe NDH complex, the cytochrome b6fcomplex, FNR and redox-inactive Fd in which the iron was replaced by gallium. Our data suggest anelectron flowvia twoseparatepathways, both reducing plastoquinone and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd,and cytochrome bh of the cytochrome b6fcomplex and does not result in the pumpingofprotons across the membrane. In the second,electron transport takes place via the NDH complex using preferentially NADH but also NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH-complex is responsible for the generation of the proton gradient. We propose a new model for chromorespiration which may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6fcomplex during cyclic electron transport in chloroplasts.
- Published
- 2019
13. Multi-omics analysis reveals sequential roles for ABA during seed maturation
- Author
-
Ludivine Soubigou-Taconnat, François Perreau, Annie Marion-Poll, Thierry Balliau, Anne Frey, Loïc Rajjou, Hiromi Suzuki, Anja Krieger-Liszkay, Gwendal Cueff, Marlène Bailly, Boris Collet, Gilles Clément, Frédéric Chauffour, Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Centre National de la Recherche Scientifique (CNRS), Institut des Sciences des Plantes de Paris-Saclay (IPS2 (UMR_9213 / UMR_1403)), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Génétique Quantitative et Evolution - Le Moulon (Génétique Végétale) (GQE-Le Moulon), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Agence Nationale de la Recherche [ANR-2010-BLAN-1233-01], Agence Nationale de la Recherche (LabEx Saclay Plant Sciences-SPS) [ANR-10-LABX-0040-SPS], European Commission [EU FP7-KBBE EcoSeed-311840], European Commission (EU Marie-Curie FP7 COFUND People Programme Agreenskills postdoctoral fellowship), French Ministère de l'Enseignement Supérieur et de la Recherche, Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Paris-Sud - Paris 11 (UP11)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay
- Subjects
0106 biological sciences ,dormancy ,Physiology ,[SDV]Life Sciences [q-bio] ,Mutant ,Arabidopsis ,drought tolerance ,signaling networks ,Plant Science ,Protein oxidation ,01 natural sciences ,Endosperm ,Transcriptome ,chemistry.chemical_compound ,Gene Expression Regulation, Plant ,abscisic-acid biosynthesis ,Photosynthesis ,Abscisic acid ,2. Zero hunger ,Regulation of gene expression ,biology ,Cell Cycle ,food and beverages ,Articles ,Genomics ,Plant Dormancy ,Cell biology ,arabidopsis seeds ,Seeds ,Metabolome ,Oxidation-Reduction ,Signal Transduction ,Genetics ,9-cis-epoxycarotenoid dioxygenase ,protein oxidation ,RNA, Messenger ,Desiccation ,Arabidopsis Proteins ,organic chemicals ,fungi ,mass-spectrometry ,biology.organism_classification ,Biosynthetic Pathways ,chemistry ,Mutation ,Dormancy ,metabolism ,Abscisic Acid ,010606 plant biology & botany ,genome-wide analysis - Abstract
International audience; Abscisic acid (ABA) is an important hormone for seed development and germination whose physiological action is modulated by its endogenous levels. Cleavage of carotenoid precursors by 9-cis epoxycarotenoid dioxygenase (NCED) and inactivation of ABA by ABA 8'-hydroxylase (CYP707A) are key regulatory metabolic steps. In Arabidopsis (Arabidopsis thaliana), both enzymes are encoded by multigene families, having distinctive expression patterns. To evaluate the genome-wide impact of ABA deficiency in developing seeds at the maturation stage when dormancy is induced, we used a nced2569 quadruple mutant in which ABA deficiency is mostly restricted to seeds, thus limiting the impact of maternal defects on seed physiology. ABA content was very low in nced2569 seeds, similar to the severe mutant aba2; unexpectedly, ABA glucose ester was detected in aba2 seeds, suggesting the existence of an alternative metabolic route. Hormone content in nced2569 seeds compared with nced259 and wild-type strongly suggested that specific expression of NCED6 in the endosperm is mainly responsible for ABA production. In accordance, transcriptome analyses revealed broad similarities in gene expression between nced2569 and either wild type or nced259 developing seeds. Gene ontology enrichments revealed a large spectrum of ABA activation targets involved in reserve storage and desiccation tolerance, and repression of photosynthesis and cell cycle. Proteome and metabolome profiles in dry nced2569 seeds, compared with wild-type and cyp707a1a2 seeds, also highlighted an inhibitory role of ABA on remobilisation of reserves, ROS production, and protein oxidation. Down-regulation of these oxidative processes by ABA may have an essential role in dormancy control.
- Published
- 2019
14. Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer
- Author
-
Anja Krieger-Liszkay, Pierre Sétif, Alain Boussac, Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Photosystème II (PS2), and ANR-16-CE05-0026,ReCyFuel,Régulations de la photosynthèse et production de biofuels par les cyanobactéries(2016)
- Subjects
0106 biological sciences ,0301 basic medicine ,PS2 ,Cytochrome ,[SDV]Life Sciences [q-bio] ,Analytical chemistry ,P700 ,Plant Science ,Photosystem I ,Cytochrome c 6 ,01 natural sciences ,Biochemistry ,Redox ,Electron Transport ,03 medical and health sciences ,Electron transfer ,Cytochromes c6 ,Bacterial Proteins ,Spinacia oleracea ,Photosystem I terminal acceptor ,Tobacco ,Plastocyanin ,Ferredoxin ,Plant Proteins ,chemistry.chemical_classification ,Spectroscopy, Near-Infrared ,Photosystem I Protein Complex ,biology ,Synechocystis ,Cell Biology ,General Medicine ,Electron acceptor ,Infrared spectral deconvolution ,030104 developmental biology ,chemistry ,biology.protein ,Ferredoxins ,Spectrophotometry, Ultraviolet ,MROP ,Oxidation-Reduction ,B3S ,010606 plant biology & botany - Abstract
A kinetic-LED-array-spectrophotometer (Klas) was recently developed for measuring in vivo redox changes of P700, plastocyanin (PCy), and ferredoxin (Fd) in the near-infrared (NIR). This spectrophotometer is used in the present work for in vitro light-induced measurements with various combinations of photosystem I (PSI) from tobacco and two different cyanobacteria, spinach plastocyanin, cyanobacterial cytochrome c6 (cyt. c6), and Fd. It is shown that cyt. c6 oxidation contributes to the NIR absorption changes. The reduction of (FAFB), the terminal electron acceptor of PSI, was also observed and the shape of the (FAFB) NIR difference spectrum is similar to that of Fd. The NIR difference spectra of the electron-transfer cofactors were compared between different organisms and to those previously measured in vivo, whereas the relative absorption coefficients of all cofactors were determined by using single PSI turnover conditions. Thus, the (840 nm minus 965 nm) extinction coefficients of the light-induced species (oxidized minus reduced for PC and cyt. c6, reduced minus oxidized for (FAFB), and Fd) were determined with values of 0.207 ± 0.004, – 0.033 ± 0.006, – 0.036 ± 0.008, and – 0.021 ± 0.005 for PCy, cyt. c6, (FAFB) (single reduction), and Fd, respectively, by taking a reference value of + 1 for P700+. The fact that the NIR P700 coefficient is larger than that of PCy and much larger than that of other contributing species, combined with the observed variability in the NIR P700 spectral shape, emphasizes that deconvolution of NIR signals into different components requires a very precise determination of the P700 spectrum.
- Published
- 2019
15. The impact of photosynthesis on initiation of leaf senescence
- Author
-
Karin Krupinska, Anja Krieger-Liszkay, Ginga Shimakawa, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC)
- Subjects
0106 biological sciences ,0301 basic medicine ,Chloroplasts ,Physiology ,FNR ,[SDV]Life Sciences [q-bio] ,photosystem ,PS ,Plant Science ,01 natural sciences ,singlet oxygen ,PQ ,abscisic acid ,Cyt ,Gene Expression Regulation, Plant ,chlorophyll binding protein ,oxidative stress ,Photosynthesis ,harvesting complex-ii ,2. Zero hunger ,chemistry.chemical_classification ,Fd ,ATP synthase ,reactive oxygen 17 species ,16 NAD(P)H dehydrogenase ,Plant physiology ,food and beverages ,ROS ,General Medicine ,ferredoxin ,superoxide dismutase ,Cell biology ,a/b-binding proteins ,Chloroplast ,Fd- 15 NADP + reductase ,CP ,ABA ,photooxidative-stress ,LHC ,Senescence ,PTOX ,cytochrome ,plastid terminal oxidase ,plastoquinone ,JA ,salicylic acid ,arabidopsis-thaliana ,Biology ,NDH ,light-harvesting complex ,03 medical and health sciences ,SA ,plant photosystem-i ,Genetics ,SOD ,Reactive oxygen species ,hydrogen-peroxide ,Chemiosmosis ,fungi ,jasmonic acid ,Cell Biology ,15. Life on land ,cyclic electron flow ,Plant Leaves ,030104 developmental biology ,superoxide-dismutase ,chemistry ,Retrograde signaling ,biology.protein ,Reactive Oxygen Species ,010606 plant biology & botany - Abstract
International audience; Senescence is the last stage of leaf development preceding the death of the organ, and it is important for nutrient remobilization and for feeding sink tissues. There are many reports on leaf senescence but the mechanisms initiating leaf senescence are still poorly understood. Leaf senescence is affected by many environmental factors and seems to vary in different species and even varieties of plants, which makes it difficult to generalize the mechanism. Here, we give an overview on studies reporting about alterations in the composition of the photosynthetic electron transport chain in chloroplasts during senescence. We hypothesize that alternative electron flow and related generation of the proton motive force required for ATP synthesis become increasingly important during progression of senescence. We address the generation of reactive oxygen species (ROS) in chloroplasts in the initiation of senescence, retrograde signaling from the chloroplast to the nucleus and ROS-dependent signaling associated with leaf senescence. Finally, differences between natural senescence and dark-induced senescence are pointed out and a few ideas for increasing crop yields by increasing the chloroplast lifespan are presented. This article is protected by copyright. All rights reserved.
- Published
- 2019
16. The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport inArabidopsis
- Author
-
Anja Krieger-Liszkay, Lourdes Gallardo-Guerrero, Belén Naranjo, Clara Mignée, Marika Lindahl, Francisco Javier Cejudo, and Dámaso Hornero-Méndez
- Subjects
0106 biological sciences ,0301 basic medicine ,Photosystem II ,Physiology ,Thioredoxin reductase ,Non-photochemical quenching ,food and beverages ,Plant Science ,biochemical phenomena, metabolism, and nutrition ,Biology ,Photosynthesis ,01 natural sciences ,Chloroplast ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,Biochemistry ,chemistry ,Thylakoid ,Chlorophyll ,bacteria ,Thioredoxin ,010606 plant biology & botany - Abstract
High irradiances may lead to photooxidative stress in plants, and non-photochemical quenching (NPQ) contributes to protection against excess excitation. One of the NPQ mechanisms, qE, involves thermal dissipation of the light energy captured. Importantly, plants need to tune down qE under light-limiting conditions for efficient utilization of the available quanta. Considering the possible redox control of responses to excess light implying enzymes, such as thioredoxins, we have studied the role of the NADPH thioredoxin reductase C (NTRC). Whereas Arabidopsis thaliana plants lacking NTRC tolerate high light intensities, these plants display drastically elevated qE, have larger trans-thylakoid ΔpH and have 10-fold higher zeaxanthin levels under low and medium light intensities, leading to extremely low linear electron transport rates. To test the impact of the high qE on plant growth, we generated an ntrc-psbs double-knockout mutant, which is devoid of qE. This double mutant grows faster than the ntrc mutant and has a higher chlorophyll content. The photosystem II activity is partially restored in the ntrc-psbs mutant, and linear electron transport rates under low and medium light intensities are twice as high as compared with plants lacking ntrc alone. These data uncover a new role for NTRC in the control of photosynthetic yield.
- Published
- 2016
17. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane
- Author
-
Catherine Biniek, Paolo Trost, Jerzy Kruk, Anja Krieger-Liszkay, Eiri Heyno, Francesca Sparla, Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ), Institut de Biologie et de Technologies de Saclay ( IBITECS ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Biochemie der Pflanzen, Ruhr-Universität Bochum [Bochum], Department of Plant Physiology and Biochemistry, Jagiellonian University [Krakow] ( UJ ), Dpto di Farmacia e biotecnologie, Université de Bologne, Biniek, Catherine, Heyno, Eiri, Kruk, Jerzy, Sparla, Francesca, Trost, Paolo, Krieger-Liszkay, Anja, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ), and Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)
- Subjects
0106 biological sciences ,0301 basic medicine ,Cytochrome ,Arabidopsis thaliana ,[SDV]Life Sciences [q-bio] ,Arabidopsis ,Germination ,Plant Science ,plasma membrane ,Quinone oxidoreductase ,01 natural sciences ,Redox ,Cell Line ,03 medical and health sciences ,chemistry.chemical_compound ,Genetic ,Superoxides ,NAD(P)H Dehydrogenase (Quinone) ,Genetics ,reactive oxygen species ,chemistry.chemical_classification ,Reactive oxygen species ,biology ,[ SDV ] Life Sciences [q-bio] ,Arabidopsis Proteins ,Superoxide ,Cell Membrane ,fungi ,food and beverages ,Cytochrome b Group ,Apoplast ,Quinone ,030104 developmental biology ,germination ,chemistry ,Biochemistry ,Gene Knockdown Techniques ,biology.protein ,Reactive oxygen specie ,Soybeans ,NAD+ kinase ,Oxidation-Reduction ,010606 plant biology & botany ,Plasma membrane - Abstract
The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2 •− in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2 •− and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2 •− production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.
- Published
- 2016
18. Importing Manganese into the Chloroplast: Many Membranes to Cross
- Author
-
Sébastien Thomine, Anja Krieger-Liszkay, Système membranaires, photobiologie, stress et détoxication (SMPSD), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Approches intégratives du Transport Ionique (MINION), Département Biologie Cellulaire (BioCell), and ANR-16-CE20-0019,ISISTOR,Amélioration du contenu en fer de la graine(2016)
- Subjects
0106 biological sciences ,0301 basic medicine ,Chloroplasts ,Photosystem II ,[SDV]Life Sciences [q-bio] ,Golgi Apparatus ,chemistry.chemical_element ,Plant Science ,Manganese ,Photosynthesis ,Thylakoids ,01 natural sciences ,03 medical and health sciences ,Arabidopsis ,homeostasis ,BIOCELL ,MINION ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,Plant Proteins ,photosynthesis ,biology ,Photosystem II Protein Complex ,Biological Transport ,Intracellular Membranes ,biology.organism_classification ,Chloroplast ,arabidopsis ,030104 developmental biology ,Membrane ,Biochemistry ,chemistry ,photosystem-ii ,Minion ,Vacuoles ,cells ,MROP ,protein ,B3S ,010606 plant biology & botany - Abstract
International audience
- Published
- 2018
19. Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE 2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas
- Author
-
Saleh Alseekh, Gilles Peltier, Alisdair R. Fernie, Bertrand Legeret, Fantao Kong, Anja Krieger-Liszkay, Fred Beisson, Adrien Burlacot, Yuanxue Liang, Yariv Brotman, Yonghua Li-Beisson, Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Bioénergie et Microalgues (EBM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Max Planck Institute of Molecular Plant Physiology (MPI-MP), Max-Planck-Gesellschaft, Système membranaires, photobiologie, stress et détoxication (SMPSD), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), ANR-13-JSV5-0005,MUsCA,Ingénierie métabolique d'une microalgue verte en vue de la production d'alcanes à chaine moyenne(2013), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Environnement, Bioénergie, Microalgues et Plantes (EBMP)
- Subjects
0106 biological sciences ,0301 basic medicine ,Photosystem II ,Chlamydomonas reinhardtii ,Plant Science ,Biology ,Photosynthesis ,01 natural sciences ,03 medical and health sciences ,Malate Dehydrogenase ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Research Articles ,Chlamydomonas ,Hydrogen Peroxide ,Cell Biology ,Metabolism ,Carbon Dioxide ,Peroxisome ,biology.organism_classification ,Electron transport chain ,Chloroplast ,[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breeding ,030104 developmental biology ,Biochemistry ,Mutation ,Oxidation-Reduction ,010606 plant biology & botany - Abstract
International audience; Plants and algae must tightly coordinate photosynthetic electron transport and metabolic activities given that they often face fluctuating light and nutrient conditions. The exchange of metabolites and signaling molecules between organelles is thought to be central to this regulation but evidence for this is still fragmentary. Here we show that knocking out the peroxisome-located MALATE DEHYDROGENASE 2 (MDH2) of Chlamydomonas reinhardtii results in dramatic alterations not only in peroxisomal fatty acid breakdown but also in chloroplast starch metabolism and photosynthesis. mdh2 mutants accumulated 50% more storage lipid and twofold more starch than wild type during nitrogen deprivation. In parallel, mdh2 showed increased PSII yield and photosynthetic CO 2 fixation. Metabolite analyses revealed a >60% reduction in malate, together with increased levels of NADPH and H 2 O 2 in mdh2. Similar phenotypes were found upon high light exposure. Furthermore, based on the lack of starch accumulation in a knockout mutant of the H 2 O 2-producing peroxisomal ACYL-COA OXIDASE 2 and on the effects of H 2 O 2 supplementation, we propose that peroxisome-derived H 2 O 2 acts as a regulator of chloroplast metabolism. We conclude that peroxisomal MDH2 helps photoautotrophs cope with nitrogen scarcity and high light by transmitting the redox state of the peroxisome to the chloroplast by means of malate shuttle-and H 2 O 2-based redox signaling.
- Published
- 2018
20. The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA-levels during stress in barley (Hordeum vulgare L.)
- Author
-
Aleksandra Świda-Barteczka, Goetz Hensel, Zofia Szweykowska-Kulinska, Wolfgang Bilger, Karin Krupinska, Anja Krieger-Liszkay, Ulrike Voigt, Système membranaires, photobiologie, stress et détoxication (SMPSD), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC)
- Subjects
0106 biological sciences ,0301 basic medicine ,retrograde signaling ,Small RNA ,Chloroplasts ,[SDV]Life Sciences [q-bio] ,RNA-binding protein ,Biology ,Brief Communication ,01 natural sciences ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Stress, Physiological ,microRNA ,Gene Knockdown Techniques ,medicine ,small RNA ,Molecular Biology ,Plant Proteins ,Cell Nucleus ,Gene knockdown ,RNA-Binding Proteins ,food and beverages ,Hordeum ,Cell Biology ,stress response ,Plants, Genetically Modified ,Cell biology ,DNA-Binding Proteins ,Plant Leaves ,Cell nucleus ,MicroRNAs ,030104 developmental biology ,medicine.anatomical_structure ,RNA, Plant ,Seedlings ,Retrograde signaling ,Hordeum vulgare ,010606 plant biology & botany - Abstract
International audience; In this article a novel mechanism of retrograde signaling by chloroplasts during stress is described. This mechanism involves the DNA/RNA binding protein WHIRLY1 as a regulator of microRNA levels. By virtue of its dual localization in chloroplasts and the nucleus of the same cell, WHIRLY1 was proposed as an excellent candidate coordinator of chloroplast function and nuclear gene expression. Comparison of wild-type and transgenic plants with an RNAi-mediated knockdown of WHIRLY1 showed, that the transgenic plants were unable to cope with continuous high light conditions. They were impaired in production of several microRNAs mediating post-transcriptional responses during stress. The results support a central role of WHIRLY1 in retrograde signaling and also underpin a so far underestimated role of microRNAs in this process.
- Published
- 2018
21. The ABA-Deficiency Suppressor Locus HAS2 Encodes the PPR Protein LOI1/MEF11 Involved in Mitochondrial RNA Editing
- Author
-
Julien Sechet, David Macherel, Hakim Mireau, Camille Roux, Annie Marion-Poll, Anja Krieger-Liszkay, Catherine Biniek, Anne Plessis, Delphine Effroy, Anne Frey, François Perreau, Helen North, Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Serv Bioenerget Biol Struct & Mécanisme, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Recherche en Horticulture et Semences (IRHS), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut Jean-Pierre Bourgin ( IJPB ), Institut National de la Recherche Agronomique ( INRA ) -AgroParisTech, Génétique Diversité et Ecophysiologie des Céréales ( GDEC ), Institut National de la Recherche Agronomique ( INRA ) -Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut de Recherche en Horticulture et Semences ( IRHS ), and Université d'Angers ( UA ) -Institut National de la Recherche Agronomique ( INRA ) -AGROCAMPUS OUEST
- Subjects
Cytochrome ,RNA, Mitochondrial ,[SDV]Life Sciences [q-bio] ,Protein subunit ,Mutant ,drought tolerance ,Arabidopsis ,Plant Science ,Mitochondrion ,Mitochondrial Proteins ,chemistry.chemical_compound ,Gene Expression Regulation, Plant ,Molecular Biology ,Abscisic acid ,Gene ,2. Zero hunger ,[ SDV ] Life Sciences [q-bio] ,biology ,Arabidopsis Proteins ,Cytochrome c ,fungi ,RNA-Binding Proteins ,food and beverages ,mitochondria ,germination ,pentatricopeptide repeat protein ,chemistry ,Biochemistry ,RNA editing ,biology.protein ,RNA ,RNA Editing ,Abscisic Acid ,Signal Transduction - Abstract
The hot ABA-deficiency suppressor2 (has2) mutation increases drought tolerance and the ABA sensitivity of stomata closure and seed germination. Here we report that the HAS2 locus encodes the MITOCHONDRIAL EDITING FACTOR11 (MEF11), also known as LOVASTATIN INSENSITIVE1. has2/mef11 mutants exhibited phenotypes very similar to the ABA-hypersensitive mutant, hai1-1 pp2ca-1 hab1-1 abi1-2, which is impaired in four genes encoding type 2C protein phosphatases (PP2C) that act as upstream negative regulators of the ABA signaling cascade. Like pp2c, mef11 plants were more resistant to progressive water stress and seed germination was more sensitive to paclobutrazol (a gibberellin biosynthesis inhibitor) as well as mannitol and NaCl, compared with the wild-type plants. Phenotypic alterations in mef11 were associated with the lack of editing of transcripts for the mitochondrial cytochrome c maturation FN2 (ccmFN2) gene, which encodes a cytochrome c-heme lyase subunit involved in cytochrome c biogenesis. Although the abundance of electron transfer chain complexes was not affected, their dysfunction could be deduced from increased respiration and altered production of hydrogen peroxide and nitric oxide in mef11 seeds. As minor defects in mitochondrial respiration affect ABA signaling, this suggests an essential role for ABA in mitochondrial retrograde regulation.
- Published
- 2015
22. High light-induced hydrogen peroxide production inChlamydomonas reinhardtiiis increased by high CO2availability
- Author
-
Chae Sun Na, Anja Krieger-Liszkay, Thomas Roach, Service de Bioénergétique, Biologie Stucturale, et Mécanismes ( SB2SM ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut de Biologie et de Technologies de Saclay ( IBITECS ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Seed Bank of Wild Resource Plants, School of Life Sciences and Biotechnology, Korea University [Seoul], Mécanismes régulateurs chez les organismes photosynthétiques ( MROP ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Service de Bioénergétique, Biologie Stucturale, et Mécanismes (SB2SM), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC)
- Subjects
NPQ ,Light ,[SDV]Life Sciences [q-bio] ,Mehler reaction ,Chlamydomonas reinhardtii ,hydrogen peroxide ,Plant Science ,Photosystem I ,Photosynthesis ,Antioxidants ,chemistry.chemical_compound ,state transition ,Genetics ,Phosphorylation ,Hydrogen peroxide ,chemistry.chemical_classification ,Reactive oxygen species ,photosynthesis ,Photosystem I Protein Complex ,[ SDV ] Life Sciences [q-bio] ,biology ,Superoxide ,Photosystem II Protein Complex ,Cell Biology ,Carbon Dioxide ,biology.organism_classification ,Oxygen ,Chloroplast ,Biochemistry ,chemistry ,CO2 ,Reactive Oxygen Species - Abstract
International audience; The production of reactive oxygen species (ROS) is an unavoidable part of photosynthesis. Stress that accompanies high light levels and low CO2 availability putatively includes enhanced ROS production in the so-called Mehler reaction. Such conditions are thought to encourage O2 to become an electron acceptor at photosystem I, producing the ROS superoxide anion radical (O2·-) and hydrogen peroxide (H2 O2 ). In contrast, here it is shown in Chlamydomonas reinhardtii that CO2 depletion under high light levels lowered cellular H2 O2 production, and that elevated CO2 levels increased H2 O2 production. Using various photosynthetic and mitochondrial mutants of C. reinhardtii, the chloroplast was identified as the main source of elevated H2 O2 production under high CO2 availability. High light levels under low CO2 availability induced photoprotective mechanisms called non-photochemical quenching, or NPQ, including state transitions (qT) and high energy state quenching (qE). The qE-deficient mutant npq4 produced more H2 O2 than wild-type cells under high light levels, although less so under high CO2 availability, whereas it demonstrated equal or greater enzymatic H2 O2 -degrading capacity. The qT-deficient mutant stt7-9 produced the same H2 O2 as wild-type cells under high CO2 availability. Physiological levels of H2 O2 were able to hinder qT and the induction of state 2, providing an explanation for why under high light levels and high CO2 availability wild-type cells behaved like stt7-9 cells stuck in state 1.
- Published
- 2015
23. The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA-levels during stress
- Author
-
A Swida-Barteczka, Ulrike Voigt, Wolfgang Bilger, Anja Krieger-Liszkay, Goetz Hensel, Zofia Szweykowska-Kulinska, and Karin Krupinska
- Subjects
Genetics ,Gene knockdown ,Nuclear gene ,Binding protein ,food and beverages ,RNA-binding protein ,Biology ,Cell biology ,chemistry.chemical_compound ,chemistry ,microRNA ,Retrograde signaling ,Hordeum vulgare ,DNA - Abstract
In this article a novel mechanism of retrograde signaling by chloroplasts during stress is described. This mechanism involves the DNA/RNA binding protein WHIRLY1 as a regulator of microRNA levels. By virtue of its dual localization in chloroplasts and the nucleus of the same cell, WHIRLY1 was proposed as an excellent candidate coordinator of chloroplast function and nuclear gene expression (Grabowski et al., 2008; Foyer et al., 2014). In this study the putative involvement of WHIRLY1 in stress dependent retrograde signaling was investigated by comparison of barley (Hordeum vulgare L., cv. Golden Promise) wild-type and transgenic plants with an RNAi-mediated knockdown of WHIRLY1. In contrast to the wild type, the transgenic plants were unable to cope with continuous high light conditions. They were impaired in production of several microRNAs mediating post-transcriptional responses during stress (Kruszka et al., 2012, Sunkar et al., 2012). The results support a central role of WHIRLY1 in retrograde signaling and underpin a so far underestimated role of microRNAs in this process.
- Published
- 2017
- Full Text
- View/download PDF
24. Overexpression of plastid terminal oxidase in Synechocystis sp. PCC 6803 alters cellular redox state
- Author
-
Anja Krieger-Liszkay, Kathleen Feilke, Ghada Ajlani, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Bioénergétique Membranaire et Stress (LBMS), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Mécanismes régulateurs chez les organismes photosynthétiques (MROP)
- Subjects
0106 biological sciences ,0301 basic medicine ,plastid terminal oxidase ,Photosystem II ,[SDV]Life Sciences [q-bio] ,Plastoquinone ,Biology ,cellular redox state ,Photosystem I ,Photosynthesis ,01 natural sciences ,Plastid terminal oxidase ,General Biochemistry, Genetics and Molecular Biology ,NAD(P)H fluorescence ,03 medical and health sciences ,chemistry.chemical_compound ,Plastid ,Chlorophyll fluorescence ,2. Zero hunger ,Synechocystis sp. PCC 6803 ,P700 ,chlorophyll fluorescence ,food and beverages ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,030104 developmental biology ,Biochemistry ,chemistry ,P700 absorption ,General Agricultural and Biological Sciences ,010606 plant biology & botany - Abstract
Cyanobacteria are the most ancient organisms performing oxygenic photosynthesis, and they are the ancestors of plant plastids. All plastids contain the plastid terminal oxidase (PTOX), while only certain cyanobacteria contain PTOX. Many putative functions have been discussed for PTOX in higher plants including a photoprotective role during abiotic stresses like high light, salinity and extreme temperatures. Since PTOX oxidizes PQH 2 and reduces oxygen to water, it is thought to protect against photo-oxidative damage by removing excess electrons from the plastoquinone (PQ) pool. To investigate the role of PTOX we overexpressed rice PTOX fused to the maltose-binding protein (MBP-OsPTOX) in Synechocystis sp. PCC 6803, a model cyanobacterium that does not encode PTOX. The fusion was highly expressed and OsPTOX was active, as shown by chlorophyll fluorescence and P 700 absorption measurements. The presence of PTOX led to a highly oxidized state of the NAD(P)H/NAD(P) + pool, as detected by NAD(P)H fluorescence. Moreover, in the PTOX overexpressor the electron transport capacity of PSI relative to PSII was higher, indicating an alteration of the photosystem I (PSI) to photosystem II (PSII) stoichiometry. We suggest that PTOX controls the expression of responsive genes of the photosynthetic apparatus in a different way from the PQ/PQH 2 ratio. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
- Published
- 2017
25. Chlamydomonas reinhardtii responding to high light: A role for 2-propenal (acrolein)
- Author
-
Wolfgang Stöggl, Anja Krieger-Liszkay, Thomas Roach, Theresa Baur, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Light ,Physiology ,Protein Carbonylation ,[SDV]Life Sciences [q-bio] ,Chlamydomonas reinhardtii ,Plant Science ,01 natural sciences ,GPX5 ,03 medical and health sciences ,chemistry.chemical_compound ,Genetics ,Acrolein ,Plant Proteins ,chemistry.chemical_classification ,Reactive oxygen species ,Autotrophic Processes ,biology ,Singlet oxygen ,Glutathione peroxidase ,Cell Biology ,General Medicine ,Glutathione ,Pigments, Biological ,biology.organism_classification ,Phototrophic Processes ,030104 developmental biology ,chemistry ,Biochemistry ,010606 plant biology & botany - Abstract
High light causes photosystem II to generate singlet oxygen (1O2), a reactive oxygen species (ROS) that can react with membrane lipids, releasing reactive electrophile species (RES), such as acrolein. To investigate how RES may contribute to light stress responses, Chlamydomonas reinhardtii was high light-treated in photoautotrophic and mixotrophic conditions and also in an oxygen-enriched atmosphere to elevate ROS production. The responses were compared to exogenous acrolein. Non-photochemical quenching (NPQ) was higher in photoautotrophic cells, as a consequence of a more de-epoxidized state of the xanthophyll cycle pool and more LHCSR3 protein, showing that photosynthesis was under more pressure than in mixotrophic cells. Photoautotrophic cells had lowered α-tocopherol and β-carotene contents and a higher level of protein carbonylation, indicators of elevated 1O2 production. Levels of glutathione, glutathione peroxidase (GPX5) and glutathione-S-transferase (GST1), important antioxidants against RES, were also increased in photoautotrophic cells. In parallel to the wild-type, the LHCSR3-deficient npq4 mutant was high light-treated, which in photoautotrophic conditions exhibited particular sensitivity under elevated oxygen, the treatment that induced the highest RES levels, including acrolein. The npq4 mutant had more GPX5 and GST1 alongside higher levels of carbonylated protein and a more oxidized glutathione redox state. In wild-type cells glutathione contents doubled after 4 h treatment, either with high light under elevated oxygen or with a non-critical dose (600 ppm) of acrolein. Exogenous acrolein also increased GST1 levels, but not GPX5. Overall, RES-associated oxidative damage and glutathione metabolism are prominently associated with light stress and potentially in signaling responses of C. reinhardtii.
- Published
- 2017
26. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms
- Author
-
Michel Havaux, Ljubica Svilar, Anja Krieger-Liszkay, Margot Loussouarn, Antoine Bily, Simona Birtic, Biologie végétale et microbiologie environnementale - UMR7265 ( BVME ), Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Aix Marseille Université ( AMU ), Mécanismes régulateurs chez les organismes photosynthétiques ( MROP ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut Parisien de Chimie Moléculaire ( IPCM ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Naturex, Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) ( BIAM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Biologie végétale et microbiologie environnementale - UMR7265 (BVME), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecophysiologie Moléculaire des Plantes (LEMP), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Protéines de Protection des Végétaux (PPV), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Criblage biologique Marseille [Faculté de médecine de la Timone], and Plant Environmental Physiology and Stress Signaling (PEPSS)
- Subjects
0301 basic medicine ,Antioxidant ,Time Factors ,[ SDV.BV.BOT ] Life Sciences [q-bio]/Vegetal Biology/Botanics ,Physiology ,Linolenic acid ,medicine.medical_treatment ,alpha-Tocopherol ,Plant Science ,Thylakoids ,Carnosol ,Rosmarinus ,Antioxidants ,Lipid peroxidation ,03 medical and health sciences ,chemistry.chemical_compound ,Lipid oxidation ,Genetics ,medicine ,Signaling and Response ,chemistry.chemical_classification ,Reactive oxygen species ,biology ,Carnosic acid ,Intracellular Membranes ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,biology.organism_classification ,Lipids ,Plant Leaves ,030104 developmental biology ,Biochemistry ,chemistry ,Abietanes ,Lipid Peroxidation ,Reactive Oxygen Species ,Oxidation-Reduction - Abstract
International audience; Carnosic acid, a phenolic diterpene specific to the Lamiaceae family, is highly abundant in rosemary (Rosmarinus officinalis). Despite numerous industrial and medicinal/pharmaceutical applications of its antioxidative features, this compound in planta and its antioxidant mechanism have received little attention, except a few studies of rosemary plants under natural conditions. In vitro analyses, using high-performance liquid chromatography-ultraviolet and luminescence imaging, revealed that carnosic acid and its major oxidized derivative, carnosol, protect lipids from oxidation. Both compounds preserved linolenic acid and monogalactosyldiacylglycerol from singlet oxygen and from hydroxyl radical. When applied exogenously, they were both able to protect thylakoid membranes prepared from Arabidopsis (Arabidopsis thaliana) leaves against lipid peroxidation. Different levels of carnosic acid and carnosol in two contrasting rosemary varieties correlated with tolerance to lipid peroxidation. Upon reactive oxygen species (ROS) oxidation of lipids, carnosic acid was consumed and oxidized into various derivatives, including into carnosol, while carnosol resisted, suggesting that carnosic acid is a chemical quencher of ROS. The antioxidative function of carnosol relies on another mechanism, occurring directly in the lipid oxidation process. Under oxidative conditions that did not involve ROS generation, carnosol inhibited lipid peroxidation, contrary to carnosic acid. Using spin probes and electron paramagnetic resonance detection, we confirmed that carnosic acid, rather than carnosol, is a ROS quencher. Various oxidized derivatives of carnosic acid were detected in rosemary leaves in low light, indicating chronic oxidation of this compound, and accumulated in plants exposed to stress conditions, in parallel with a loss of carnosic acid, confirming that chemical quenching of ROS by carnosic acid takes place in planta.
- Published
- 2017
27. Editorial
- Author
-
Anja Krieger-Liszkay, Pierre Cardol, Génétique et Physiologie des Microalgues, Université de Liège, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), and Université de Liège
- Subjects
0106 biological sciences ,0301 basic medicine ,Cyanobacteria ,Light ,Physiology ,[SDV]Life Sciences [q-bio] ,Plant Science ,Biology ,Photosynthesis ,01 natural sciences ,Electron Transport ,03 medical and health sciences ,Algae ,Chlorophyta ,Genetics ,Microalgae ,Ecology ,Evolution of photosynthesis ,Cell Biology ,General Medicine ,Carbon Dioxide ,Plants ,biology.organism_classification ,Electron transport chain ,Oxygen reduction ,Oxygen ,030104 developmental biology ,Electron flow ,MROP ,Excess energy ,B3S ,010606 plant biology & botany - Abstract
Understanding of the molecular mechanisms of photosynthetic electron and proton transports and their regulation in plants and algae in response to changes in environmental conditions is an important issue for fundamental research on photosynthesis, and may extend even to practical applications by identifying important sites for improvement of photosynthesis. The significance and often centrality of regulatory mechanisms of photosynthetic electron transport is well established for processes in plant acclimation. In recent years, significant advancements have been achieved in understanding of regulatory processes such as dissipation of excess energy in the antenna systems, state transitions, cyclic electron flow, oxygen reduction by flavodiiron enzymes and many others.
- Published
- 2017
28. The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher
- Author
-
Adjélé Wilson, Ateeq Ur Rehman, Imre Vass, Arezki Sedoud, Anja Krieger-Liszkay, Rocío López-Igual, François Perreau, Clémence Boulay, Diana Kirilovsky, Phycosource, Systèmes membranaires, photobiologie, stress et détoxification (SMPSD - UMR 8221), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institute of Plant Biology, Biological Research Centre [Budapest] (BRC), Hungarian Academy of Sciences (MTA)-Hungarian Academy of Sciences (MTA), Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Agence Nationale de la Recherche (project CYANOPROTECT), CNRS, Commissariat a lEnergie Atomique, HARVEST EU FP7 Marie Curie Research Training Network, Phycosource, French Infrastructure for Integrated Structural Biology [ANR-10-INSB-05-01], HARVEST, Hungarian Granting Agency OTKA [NN-110960], and Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cyanobacteria ,Photosynthetic reaction centre ,biology ,Orange carotenoid protein ,photoactive orange carotenoid protein ,Singlet oxygen ,[SDV]Life Sciences [q-bio] ,organic chemicals ,Synechocystis ,Cell Biology ,Plant Science ,biology.organism_classification ,Photochemistry ,chemistry.chemical_compound ,Biochemistry ,chemistry ,Thylakoid ,Photoprotection ,OCP ,polycyclic compounds ,Phycobilisome ,Research Articles - Abstract
Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the photosynthetic reaction centers under high-light conditions. The photoactive orange carotenoid protein (OCP) is essential in this mechanism as a light sensor and energy quencher. When OCP is photoactivated by strong blue-green light, it is able to dissipate excess energy as heat by interacting with phycobilisomes. As a consequence, charge separation and recombination leading to the formation of singlet oxygen diminishes. Here, we demonstrate that OCP has another essential role. We observed that OCP also protects Synechocystis cells from strong orange-red light, a condition in which OCP is not photoactivated. We first showed that this photoprotection is related to a decrease of singlet oxygen concentration due to OCP action. Then, we demonstrated that, in vitro, OCP is a very good singlet oxygen quencher. By contrast, another carotenoid protein having a high similarity with the N-terminal domain of OCP is not more efficient as a singlet oxygen quencher than a protein without carotenoid. Although OCP is a soluble protein, it is able to quench the singlet oxygen generated in the thylakoid membranes. Thus, OCP has dual and complementary photoprotective functions as an energy quencher and a singlet oxygen quencher.
- Published
- 2014
29. Effect of constitutive expression of bacterial phytoene desaturase CRTI on photosynthetic electron transport in Arabidopsis thaliana
- Author
-
Peter Beyer, Anja Krieger-Liszkay, Kathleen Feilke, Denise Galzerano, and Patrick Schaub
- Subjects
Chlorophyll ,Phytoene desaturase ,plastid terminal oxidase ,Photoinhibition ,Plastoquinone ,Immunoblotting ,Arabidopsis ,Biophysics ,Biology ,Thylakoids ,Biochemistry ,Plastid terminal oxidase ,Gene Expression Regulation, Enzymologic ,Electron Transport ,chemistry.chemical_compound ,Bacterial Proteins ,Superoxides ,Gallic Acid ,Photosynthesis ,bacterial phytoene desaturase ,reactive oxygen species ,chemistry.chemical_classification ,Reactive oxygen species ,Singlet Oxygen ,photoinhibition ,Arabidopsis Proteins ,DCMU ,Hydrogen Peroxide ,Cell Biology ,Plants, Genetically Modified ,Carotenoids ,Electron transport chain ,Plant Leaves ,chemistry ,A. thaliana ,Thylakoid ,Oxidoreductases ,Oxidation-Reduction ,photosynthetic electron transport - Abstract
The constitutive expression of the bacterial carotene desaturase (CRTI) in Arabidopsis thaliana leads to increased susceptibility of leaves to light-induced damage. Changes in the photosynthetic electron transport chain rather than alterations of the carotenoid composition in the antenna were responsible for the increased photoinhibition. A much higher level of superoxide/hydrogen peroxide was generated in the light in thylakoid membranes from the CRTI expressing lines than in wild-type while the level of singlet oxygen generation remained unchanged. The increase in reactive oxygen species was related to the activity of plastid terminal oxidase (PTOX) since their generation was inhibited by the PTOX-inhibitor octyl gallate, and since the protein level of PTOX was increased in the CRTI-expressing lines. Furthermore, cyclic electron flow was suppressed in these lines. We propose that PTOX competes efficiently with cyclic electron flow for plastoquinol in the CRTI-expressing lines and that it plays a crucial role in the control of the reduction state of the plastoquinone pool.
- Published
- 2014
30. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms
- Author
-
Judit Prihoda, Fabrice Rappaport, Denis Falconet, Stefano Santabarbara, Pierre Joliot, Benjamin Bailleul, Atsuko Tanaka, Pierre Cardol, Richard Bligny, Omer Murik, Chris Bowler, Paul G. Falkowski, Serena Flori, Dimitris Petroutsos, Leila Tirichine, Nicolas Berne, Anja Krieger-Liszkay, Giovanni Finazzi, Valeria Villanova, Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Physiologie membranaire et moléculaire du chloroplaste (PMMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers)-Rutgers University System (Rutgers), Génétique et Physiologie des Microalgues, Université de Liège, Laboratoire de physiologie cellulaire végétale (LPCV), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Recherche Agronomique (INRA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Fermentalg, Serv Bioenerget Biol Struct & Mécanisme, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Istituto di Biofisica, Consiglio Nazionale delle Ricerch, Collège de France (CdF (institution)), Region Rhone-Alpes (Cible project)- Marie Curie Initial Training Network Accliphot (FP7-PEPOPLE-2012-ITN, 316427)- CNRS Defi (ENRS 2013)- CEA Bioenergies program- Belgian Fonds de la Recherche Scientifique- Incentive Grant for Scientific Research F 4520- COSI ITN project, ANR-12-BIME-0005,DiaDomOil,Domestication des diatomées pour la production de biocarburants(2012), ANR-09-BLAN-0139,PhytAdapt,Adaptation du phytoplancton(2009), ANR-11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010), European Project: 294823,EC:FP7:ERC,ERC-2011-ADG_20110310,DIATOMITE(2012), European Project: 287589,EC:FP7:KBBE,FP7-OCEAN-2011,MICRO B3(2012), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), ANR: NT09_567009,Phytadapt,Phytadapt, ANR-11-LABX-0011/11-LABX-0011,DYNAMO,Dynamique des membranes transductrices d'énergie : biogénèse et organisation supramoléculaire.(2011), ANR: ANR-11-IDEX-0001-02,ANR-11-IDEX-0001-02, ANR-10-IDEX-0001-02/10-LABX-0054,MEMOLIFE,Memory in living systems: an integrated approach(2010), Institut de biologie de l'ENS Paris (IBENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Liège, Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Bailleul B., Berne N., Murik O., Petroutsos D., Prihoda J., Tanaka A., Villanova V., Bligny R., Flori S., Falconet D., Krieger-Liszkay A., Santabarbara S., Rappaport F., Joliot P., Tirichine L., Falkowski P.G., Cardol P., Bowler C., Finazzi G., and Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris
- Subjects
Aquatic Organisms ,chemistry.chemical_compound ,Adenosine Triphosphate ,Settore BIO/04 - Fisiologia Vegetale ,CYCLIC ELECTRON FLOW ,Plastids ,Photosynthesis ,PHAEODACTYLUM-TRICORNUTUM ,Plant Proteins ,chemistry.chemical_classification ,Multidisciplinary ,microalgae ,Respiration ,Carbon fixation ,Energetic interactions ,Proton-Motive Force ,Mitochondria ,metabolic mutant ,Phenotype ,ATP/NADPH ratio ,OXYGEN PHOTOREDUCTION ,Carbon dioxide ,Oxidoreductases ,Oxidation-Reduction ,Ocean ,Oceans and Seas ,Electron flow ,Marine eukaryotes ,Biology ,CHLAMYDOMONAS-REINHARDTII ,Carbon cycle ,Carbon Cycle ,Mitochondrial Proteins ,Energetic exchanges ,Botany ,Organic matter ,Ecosystem ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,14. Life underwater ,Plastid ,Diatoms ,Chemiosmosis ,fungi ,ECS ,Carbon Dioxide ,chemistry ,13. Climate action ,NADP - Abstract
International audience; Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.
- Published
- 2015
31. AIR12, a b-type cytochrome of the plasma membrane of Arabidopsis thaliana is a negative regulator of resistance against Botrytis cinerea
- Author
-
Alex Costa, Francesca Sicilia, Anja Krieger-Liszkay, Giulia De Lorenzo, Maria Raffaella Barbaro, Francesca Sparla, Valeria Preger, Paolo Trost, Dipartimento di Biotecnologie e Bioscienze ( Università di Milano-Bicocca ), Université de Milan, Dpto di Farmacia e biotecnologie, Université de Bologne, Dipartimento di Biologia e Biotecnologia 'C. Darwin,', Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Mécanismes régulateurs chez les organismes photosynthétiques ( MROP ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut de Biologie et de Technologies de Saclay ( IBITECS ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Dipartimento di Biotecnologie e Bioscienze (Università di Milano-Bicocca), Department of Biology and Biotechnology 'Charles Darwin', Institut Pasteur, Fondation Cenci Bolognetti - Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Costa, Alex, Barbaro, Maria Raffaella, Sicilia, Francesca, Preger, Valeria, Krieger-Liszkay, Anja, Sparla, Francesca, De Lorenzo, Giulia, Trost, Paolo, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), and Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA)
- Subjects
0106 biological sciences ,[SDV]Life Sciences [q-bio] ,Arabidopsis ,Plant Science ,01 natural sciences ,chemistry.chemical_compound ,Apoplast ,Botrytis cinerea ,Gene Expression Regulation, Plant ,Arabidopsis thaliana ,chemistry.chemical_classification ,0303 health sciences ,biology ,Superoxide ,Medicine (all) ,food and beverages ,General Medicine ,Host-Pathogen Interaction ,Plasma membrane redox ,Biochemistry ,Host-Pathogen Interactions ,Reactive oxygen specie ,Botrytis ,Microtubule-Associated Proteins ,Cytochrome b ,Plant Disease ,Arabidopsis Protein ,03 medical and health sciences ,Genetic ,Botryti ,Genetics ,Ascorbate ,Plant Diseases ,030304 developmental biology ,Reactive oxygen species ,Agronomy and Crop Science ,[ SDV ] Life Sciences [q-bio] ,Arabidopsis Proteins ,Lateral root ,Cell Membrane ,Microtubule-Associated Protein ,fungi ,Wild type ,biology.organism_classification ,Cytochrome b Group ,chemistry ,Arabidopsi ,010606 plant biology & botany - Abstract
International audience; AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. Recombinant AIR12 from Arabidopsis accepted electrons from ascorbate or superoxide, and donated electrons to either monodehydroascorbate or oxygen. AIR12 was found associated in vivo to the plasma membrane. Though linked to the membrane by a glycophosphatidylinositol anchor, AIR12 is a hydrophilic and glycosylated protein predicted to be fully exposed to the apoplast. The expression pattern of AIR12 in Arabidopsis is developmentally regulated and correlated to sites of controlled cell separation (e.g. micropilar endosperm during germination, epidermal cells surrounding the emerging lateral root) and cells around wounds. Arabidopsis (Landsberg erecta-0) mutants with altered levels of AIR12 did not show any obvious phenotype. However, AIR12-overexpressing plants accumulated ROS (superoxide, hydrogen peroxide) and lipid peroxides in leaves, indicating that AIR12 may alter the redox state of the apoplast under particular conditions. On the other hand, AIR12-knock out plants displayed a strongly decreased susceptibility to Botrytis cinerea infection, which in turn induced AIR12 expression in susceptible wild type plants. Altogether, the results suggest that AIR12 plays a role in the regulation of the apoplastic redox state and in the response to necrotrophic pathogens. Possible relationships between these functions are discussed.
- Published
- 2015
32. Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal inChlamydomonas reinhardtii
- Author
-
Anja Krieger-Liszkay, Beat B. Fischer, Mariette Bedhomme, Laure Michelet, Thomas Roach, and Stéphane D. Lemaire
- Subjects
0106 biological sciences ,chemistry.chemical_classification ,0303 health sciences ,Reactive oxygen species ,biology ,Physiology ,Chlamydomonas reinhardtii ,Plant Science ,biology.organism_classification ,01 natural sciences ,Chloroplast ,03 medical and health sciences ,chemistry.chemical_compound ,Cytosol ,Light intensity ,Biochemistry ,chemistry ,Catalase ,Heat shock protein ,biology.protein ,Biophysics ,Hydrogen peroxide ,030304 developmental biology ,010606 plant biology & botany - Abstract
In photosynthetic organisms, excess light is a stress that induces production of reactive oxygen species inside the chloroplasts. As a response, the capacity of antioxidative defence mechanisms increases. However, when cells of Chlamydomonas reinhardtii were shifted from dark to high light, a reversible partial inactivation of catalase activity was observed, which correlated with a transient increase in the level of H2 O2 in the 10 μm range. This concentration range seems to be necessary to activate H2 O2 -dependent signalling pathways stimulating the expression of H2 O2 responsive genes, such as the heat shock protein HSP22C. Catalase knock-down mutants had lost the transient accumulation of H2 O2 , suggesting that a decrease in catalase activity was the key element for establishing a transient H2 O2 burst. Catalase was inactivated by a one-electron event consistent with the reduction of a single cysteine. We propose that under high light intensity, the redox state of the photosynthetic electron transport chain is sensed and transmitted to the cytosol to regulate the catalase activity. This allows a transient accumulation of H2 O2 , inducing a signalling event that is transmitted to the nucleus to modulate the expression of chloroplast-directed protection enzymes.
- Published
- 2013
33. Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods
- Author
-
Jouni Toivola, Anna Lepistö, Eevi Rintamäki, Anja Krieger-Liszkay, Eveliina Pakula, and Florence Vignols
- Subjects
0106 biological sciences ,Chloroplasts ,Thioredoxin-Disulfide Reductase ,Arabidopsis thaliana ,Physiology ,Thioredoxin reductase ,Acclimatization ,Photoperiod ,Mutant ,Arabidopsis ,Plant Science ,Glucose-1-Phosphate Adenylyltransferase ,Biology ,Reductase ,01 natural sciences ,03 medical and health sciences ,ADP-glucose pyrophosphorylase ,chloroplast ,thioredoxins ,030304 developmental biology ,2. Zero hunger ,0303 health sciences ,Arabidopsis Proteins ,starch ,ta1183 ,ta1182 ,food and beverages ,ROS ,biochemical phenomena, metabolism, and nutrition ,biology.organism_classification ,Chloroplast ,Plant Leaves ,Oxidative Stress ,Biochemistry ,NTRC ,bacteria ,Thioredoxin ,Reactive Oxygen Species ,010606 plant biology & botany ,Research Paper - Abstract
Plastid-localized NADPH-dependent thioredoxin reductase C (NTRC) is a unique NTR enzyme containing both reductase and thioredoxin domains in a single polypeptide. Arabidopsis thaliana NTRC knockout lines (ntrc) show retarded growth, especially under short-day (SD) photoperiods. This study identified chloroplast processes that accounted for growth reduction in SD-acclimated ntrc. The strongest reduction in ntrc growth occurred under photoperiods with nights longer than 14 h, whereas knockout of the NTRC gene did not alter the circadian-clock-controlled growth of Arabidopsis. Lack of NTRC modulated chloroplast reactive oxygen species (ROS) metabolism, but oxidative stress was not the primary cause of retarded growth of SD-acclimated ntrc. Scarcity of starch accumulation made ntrc leaves particularly vulnerable to photoperiods with long nights. Direct interaction of NTRC and ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was confirmed by yeast two-hybrid analysis. The ntrc line was not able to maximize starch synthesis during the light period, which was particularly detrimental under SD conditions. Acclimation of Arabidopsis to SD conditions also involved an inductive rise of ROS production in illuminated chloroplasts that was not counterbalanced by the activation of plastidial anti-oxidative systems. It is proposed that knockout of NTRC challenges redox regulation of starch synthesis, resulting in stunted growth of the mutant lines acclimated to the SD photoperiod.
- Published
- 2013
34. Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast
- Author
-
Ismail Turkan, Karl-Josef Dietz, Anja Krieger-Liszkay, University of Bielefeld ( VLB ), Ege university, Mécanismes régulateurs chez les organismes photosynthétiques ( MROP ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), German Science Foundation(grant nos. DI346, SPP1710, and 1935 to K.-J.D.), Universität Bielefeld = Bielefeld University, Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Ege Üniversitesi
- Subjects
0106 biological sciences ,0301 basic medicine ,Physiology ,[SDV]Life Sciences [q-bio] ,Plant Science ,Biology ,Photosynthesis ,01 natural sciences ,Redox ,03 medical and health sciences ,chemistry.chemical_compound ,Genetics ,chemistry.chemical_classification ,Reactive oxygen species ,[ SDV ] Life Sciences [q-bio] ,Singlet oxygen ,Superoxide ,Peroxisome ,3. Good health ,Chloroplast ,Cytosol ,030104 developmental biology ,Biochemistry ,chemistry ,Biophysics ,010606 plant biology & botany - Abstract
WOS: 000381303300003, PubMed ID: 27255485, Photosynthesis is a high-rate redox metabolic process that is subjected to rapid changes in input parameters, particularly light. Rapid transients of photon capture, electron fluxes, and redox potentials during photosynthesis cause reactive oxygen species (ROS) to be released, including singlet oxygen, superoxide anion radicals, and hydrogen peroxide. Thus, the photosynthesizing chloroplast functions as a conditional source of important redox and ROS information, which is exploited to tune processes both inside the chloroplast and, following retrograde release or processing, in the cytosol and nucleus. Analyses of mutants and comparative transcriptome profiling have led to the identification of these processes and associated players and have allowed the specificity and generality of response patterns to be defined. The release of ROS and oxidation products, envelope permeabilization (for larger molecules), and metabolic interference with mitochondria and peroxisomes produce an intricate ROS and redox signature, which controls acclimation processes. This photosynthesis-related ROS and redox information feeds into various pathways (e.g. the mitogen-activated protein kinase and OXI1 signaling pathways) and controls processes such as gene expression and translation., German Science FoundationGerman Research Foundation (DFG) [DI346, SPP1710, 1935], This work was supported by the German Science Foundation (grant nos. DI346, SPP1710, and 1935 to K.-J.D.).
- Published
- 2016
35. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis
- Author
-
Quentin Bruggeman, Kai Xun Chan, Barry J. Pogson, Marianne Delarue, Raphaël Lugan, Florence Prunier, Catherine Bergounioux, Cécile Raynaud, Christelle Mazubert, Su Yin Phua, Anja Krieger-Liszkay, Moussa Benhamed, Institute of Plant Sciences Paris-Saclay, Institut de biologie moléculaire des plantes ( IBMP ), Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ), Australian Research Council Centre of Excellence in Plant Energy Biology, Australian National University ( ANU ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ), Division of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, Center for Numerical Porous Media (NumPor) - King Abdullah University of Science and Technology, Institut de biologie moléculaire des plantes (IBMP), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Australian National University (ANU), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), King Abdullah University of Science and Technology (KAUST), and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
0106 biological sciences ,0301 basic medicine ,Programmed cell death ,Nuclear gene ,Innate immune system ,biology ,[ SDV ] Life Sciences [q-bio] ,Physiology ,Abiotic stress ,[SDV]Life Sciences [q-bio] ,food and beverages ,Plant Science ,Biotic stress ,biology.organism_classification ,01 natural sciences ,Cell biology ,Chloroplast ,03 medical and health sciences ,030104 developmental biology ,Arabidopsis ,Genetics ,Retrograde signaling ,010606 plant biology & botany - Abstract
International audience; Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.
- Published
- 2016
36. Effect of Chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer
- Author
-
Gabriel Cornic, François Perreau, Jerzy Kruk, Peter Streb, Anja Krieger-Liszkay, Kathleen Feilke, Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ecologie Systématique et Evolution (ESE), Université Paris-Sud - Paris 11 (UP11)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS), Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Department of Plant Physiology and Biochemistry, Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Jagiellonian University [Krakow] (UJ), Mécanismes régulateurs chez les organismes photosynthétiques ( MROP ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Ecologie Systématique et Evolution ( ESE ), Université Paris-Sud - Paris 11 ( UP11 ) -AgroParisTech-Centre National de la Recherche Scientifique ( CNRS ), Institut Jean-Pierre Bourgin ( IJPB ), Institut National de la Recherche Agronomique ( INRA ) -AgroParisTech, and Jagiellonian University [Krakow] ( UJ )
- Subjects
0106 biological sciences ,0301 basic medicine ,Photoinhibition ,plastid terminal oxidase ,[SDV]Life Sciences [q-bio] ,PTOX1 ,Chlamydomonas reinhardtii ,Plant Science ,01 natural sciences ,Plastid terminal oxidase ,Electron Transport ,03 medical and health sciences ,Tobacco ,Genetics ,Plastids ,Photosynthesis ,Electrochemical gradient ,P700 ,[ SDV ] Life Sciences [q-bio] ,biology ,Nicotiana tabacum ,Chlamydomonas ,regulation ,Cell Biology ,biology.organism_classification ,Plants, Genetically Modified ,Electron transport chain ,030104 developmental biology ,Biochemistry ,Thylakoid ,Chlamydomonas reinhardtii PTOX1 ,Oxidoreductases ,photooxidative stress ,photosynthetic electron transport ,010606 plant biology & botany - Abstract
International audience; The plastid terminal oxidase PTOX is a plastohydroquinone:oxygen oxidoreductase that is important for carotenoid biosynthesis and plastid development. Its role in photosynthesis is controversially discussed. Under a number of abiotic stress conditions, the protein level of PTOX increases. PTOX is thought to act as a safety valve under high light protecting the photosynthetic apparatus against photodamage. However, transformants with high PTOX level were reported to suffer from photoinhibition. To analyze the effect of PTOX on the photosynthetic electron transport, tobacco expressing PTOX-1 from Chlamydomonas reinhardtii (Cr-PTOX1) was studied by chlorophyll fluorescence, thermoluminescence, P700 absorption kinetics and CO2 assimilation. Cr-PTOX1 was shown to compete very efficiently with the photosynthetic electron transport for PQH2 . High pressure liquid chromatography (HPLC) analysis confirmed that the PQ pool was highly oxidized in the transformant. Immunoblots showed that, in the wild-type, PTOX was associated with the thylakoid membrane only at a relatively alkaline pH value while it was detached from the membrane at neutral pH. We present a model proposing that PTOX associates with the membrane and oxidizes PQH2 only when the oxidation of PQH2 by the cytochrome b6 f complex is limiting forward electron transport due to a high proton gradient across the thylakoid membrane.
- Published
- 2016
37. The dual role of the plastid terminal oxidase PTOX: between a protective and a pro-oxidant function
- Author
-
Kathleen Feilke, Anja Krieger-Liszkay, Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ), Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Opinion ,Phytoene desaturase ,Photoinhibition ,abiotic stress ,plastid terminal oxidase ,Photosystem II ,[SDV]Life Sciences [q-bio] ,Plastoquinone ,Plant Science ,Biology ,lcsh:Plant culture ,01 natural sciences ,Plastid terminal oxidase ,03 medical and health sciences ,chemistry.chemical_compound ,lcsh:SB1-1110 ,Electrochemical gradient ,ComputingMilieux_MISCELLANEOUS ,[ SDV ] Life Sciences [q-bio] ,food and beverages ,regulation ,Chlororespiration ,030104 developmental biology ,Biochemistry ,chemistry ,13. Climate action ,Thylakoid ,Biophysics ,Reactive Oxygen Species ,photosynthetic electron transport ,010606 plant biology & botany - Abstract
The plastid terminal oxidase (PTOX) is a non-heme diiron quinol oxidase that oxidizes plastoquinol and reduced O2 to H2O. PTOX was discovered in the so-called immutans mutant of A. thaliana showing a variegated phenotype (Wetzel et al., 1994; Carol et al., 1999). PTOX is localized in the non-appressed regions of the thylakoid membrane (Lennon et al., 2003) and is involved in carotenoid biosynthesis, plastid development, and chlororespiration. Reviews have focused on the role of PTOX in chlororespiration (Bennoun, 2002; Rumeau et al., 2007), in chloroplast biogenesis (Putarjunan et al., 2013) and in stress responses (McDonald et al., 2011; Sun and Wen, 2011). A recent review by Nawrocki et al. (2015) has addressed the role of PTOX in poising the chloroplast redox potential in darkness. However, its role and interplay with the photosynthetic electron flow remains unclear. Plants grown in moderate light under non-stress conditions have low PTOX concentrations (about 1 PTOX protein per 100 PSII; Lennon et al., 2003). By contrast, elevated PTOX levels have been found in plants exposed to abiotic stresses such as high temperatures, high light and drought (Quiles, 2006), salinity (Stepien and Johnson, 2009), low temperatures and high intensities of visible (Ivanov et al., 2012), and UV light (Laureau et al., 2013). PTOX has been proposed to act as a safety valve by protecting the plastoquinone pool from overreduction under abiotic stress. A highly reduced PQ pool hinders forward electron flow and triggers charge recombination in photosystem II (PSII) leading to the generation of triplet chlorophyll and highly toxic singlet oxygen. However, overexpression of PTOX in A. thaliana did not protect against light-induced photodamage (Rosso et al., 2006) and even enhanced photo-oxidative stress in tobacco expressing, in addition to its endogenous enzyme, either PTOX from A. thaliana (Heyno et al., 2009) or PTOX1 from C. reinhardtii (Ahmad et al., 2012). Different to higher plants C. reinhardtii possesses two isoforms, PTOX1 and PTOX2. PTOX1 is most likely responsible for regenerating PQ for phytoene desaturation and shows a lower rate of plastoquinol oxidation during photosynthesis than PTOX2 (Houille-Vernes et al., 2011). Using purified PTOX, Yu and coworkers have recently shown that depending on the quinol concentration PTOX can act as an anti-oxidant or pro-oxidant (Feilke et al., 2014; Yu et al., 2014). PTOX activity was found to be pH insensitive between pH 6.0–8.5 when as substrate decylPQH2 dissolved in methanol was used (Yu et al., 2014). During the catalysis, peroxide intermediates are formed at the diiron center. Depending on the lifetime of these intermediates, reactive oxygen species (ROS) can be generated as a side reaction. Isolated PTOX generates superoxide radicals at both high, but physiologically relevant, quinol concentrations at pH 8.0 and substrate limiting concentrations at pH 6.0–6.5 (Feilke et al., 2014; Yu et al., 2014). When substrate is limited, the second quinol may not arrive in time leading to superoxide formation directly at the catalytic center. Alternatively, since at pH 8.0 the semiquinone is more stable than at pH 6.0, it is conceivable that the high pH stabilized semiquinone acts as a ROS generator. PTOX in overexpressors has also been found to generate superoxide in the light (Heyno et al., 2009). By oxidizing plastoquinol PTOX reduces the number of electrons available for photosynthetic electron flow. It is generally accepted that PTOX has low activity compared to photosynthetic electron flow. The maximum rate of PTOX was reported to be 5 e− s−1 PSII−1 for PTOX2 in C. reinhardtii and 0.3 e− s−1 PSII−1 in tomato while the maximal rate of photosynthesis is approximately 150 e− s−1 PSII−1 (Nawrocki et al., 2015). However in plants exposed to stress, PTOX activity can account for 30% of the PSII activity (Stepien and Johnson, 2009). The in vitro enzyme activity of PTOX is high when substrate concentrations are saturating (up to 19.01 ± 1.1 μmol O2 mg protein−1 min−1; Yu et al., 2014). This corresponds to a turnover rate of 320 e− s−1 PTOX−1 at 35°C, the optimum temperature for PTOX from rice. The discrepancy between the reported PTOX activities in planta and the Vmax measured with the purified protein points to a mechanism that allows the regulation of PTOX activity depending on the reduction state of the electron transport chain. Since PTOX can compete with linear and cyclic electron flow (Feilke et al., 2015) and consequently lowers NADPH, ATP production and CO2 fixation and potentially generates ROS, its activity must be tightly controlled. High activity is beneficial for the plant to protect the photosynthetic apparatus against photoinhibition when the electron transport chain is in a highly reduced state as it is the case under abiotic stress when the stomata are closed due to water stress or when CO2 fixation is limited by unfavorable temperatures. However, high PTOX activity is detrimental to high photosynthetic activity when light and CO2 are not limiting. These observations have led us to postulate the following hypothesis (Figure (Figure1)1) that explains the discrepancies in the literature about the safety valve function of PTOX. When stromal pH is alkaline (in high light), PTOX may become associated with the membrane giving it access to its substrate, lipophilic plastoquinol, leading to efficient oxidation of the quinol and reduction of O2 to H2O. By contrast when stroma pH becomes less alkaline (under non-saturating light conditions) PTOX may be soluble. Soluble PTOX cannot access its substrate plastoquinol that is located in the thylakoid membrane and the enzyme is effectively inactive. Activity of carotenoid biosynthesis enzymes may be regulated in a similar manner. Phytoene desaturase, which catalyzes the reaction of lipophilic phytoene to ζ-carotene, is found in the stroma both as a tetrameric membrane-bound form which has access to substrate and a soluble multi-oligomeric form in the stroma that does not (Gemmecker et al., 2015). Another example of an enzyme known to associate with the membrane in a pH-dependent manner is the violaxanthin de-epoxidase (Hager and Holocher, 1994). This enzyme associates with the thylakoid membrane when the luminal pH decreases. Figure 1 Hypothetical model of the regulation of PTOX activity by the proton gradient in higher plants. Under non-saturating light conditions linear electron transport between PSII and PSI takes place and a moderate proton gradient is established across the thylakoid ... The model of pH-dependent regulation of PTOX activity by membrane association allows us to rationalize how PTOX could act as a safety valve under conditions of stress such as drought, high light and extreme temperatures when the stomata are closed and the CO2 assimilation rate is low and the stromal pH is alkaline. Its dissociation from the membrane at less alkaline pH would hinder its competition with the photosynthetic electron chain for its substrate plastoquinol. Chlororespiration in the dark requires membrane associated PTOX. In our model, this can only take place when a proton gradient is created in the dark by hydrolysis of ATP that is either present in the chloroplast or delivered to the chloroplast from mitochondria. Additionally, when the plastoquinone pool is highly reduced, PTOX can generate superoxide, a potential signaling mechanism that causes the expression levels of responsive genes to change allowing the plant to acclimate to changes in its environment.
- Published
- 2016
38. Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity inArabidopsis thaliana
- Author
-
Jérôme Giraudat, Viviane Lanquar, Sébastien Thomine, Laure Michelet, Anja Krieger-Liszkay, Hélène Molins, Astrid Agorio, and Thomas Roach
- Subjects
0106 biological sciences ,0303 health sciences ,Cadmium ,Chlorosis ,biology ,Physiology ,Mutant ,chemistry.chemical_element ,Plant Science ,Oxidative phosphorylation ,Vacuole ,medicine.disease_cause ,biology.organism_classification ,01 natural sciences ,Chloroplast ,03 medical and health sciences ,chemistry ,Biochemistry ,medicine ,Arabidopsis thaliana ,Oxidative stress ,030304 developmental biology ,010606 plant biology & botany - Abstract
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1-3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1-3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1-3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.
- Published
- 2012
39. High and low potential forms of the QA quinone electron acceptor in Photosystem II of Thermosynechococcus elongatus and spinach
- Author
-
Christine Gross, Kunio Ido, Anja Krieger-Liszkay, Arezki Sedoud, Kentaro Ifuku, Fernando Guerrero, A. William Rutherford, and Thanh-Lan Lai
- Subjects
Chlorophyll ,Photosystem II ,Biophysics ,Electrons ,macromolecular substances ,Cyanobacteria ,Photochemistry ,Redox ,Spinacia oleracea ,Radiology, Nuclear Medicine and imaging ,Chlorophyll fluorescence ,chemistry.chemical_classification ,Radiation ,Radiological and Ultrasound Technology ,biology ,Chemistry ,Quinones ,Photosystem II Protein Complex ,Active site ,Electron acceptor ,biology.organism_classification ,Quinone ,Spectrometry, Fluorescence ,biology.protein ,Spinach ,Titration ,Oxidation-Reduction - Abstract
The redox potential of Q A in Photosystem II (PSII) from Thermosynechococcus elongatus was titrated monitoring chlorophyll fluorescence. A high potential form ( E m = +60 ± 25 mV) was found in the absence of Mn 4 Ca, the active site for water oxidation. The low potential form ( E m = −60 ± 48 mV), which is difficult to measure in conventional titration experiments, could be “locked in” by cross-linking the active enzyme. This indicates that the presence of Mn 4 Ca is relayed to the quinone site by significant structural changes in the protein. The presence of high and low potential forms agrees with what has been seen in plants, algae from our lab and in T. elongatus (Shibamoto et al., Biochemistry 48 (2009) 10682–10684). In the latter work, the potentials of Q A were shifted to lower potentials compared to other measurements. The redox potential of Q A in Mn-depleted PSII from spinach was titrated in the presence of redox mediators and the midpoint potential was shifted by 80 mV towards a more negative value compared to titrations without mediators. The lower values of the midpoint potential of the ( Q A / Q A - ) redox couple in the literature could be due to a perturbation due to a specific mediator.
- Published
- 2011
40. Production and diffusion of chloroplastic H2O2 and its implication to signalling
- Author
-
Maria Mubarakshina, Warwick Hillier, Murray R. Badger, Ilya A. Naydov, Boris Ivanov, and Anja Krieger-Liszkay
- Subjects
0106 biological sciences ,Chloroplasts ,Physiology ,Arabidopsis ,Plant Science ,Biology ,Photosynthesis ,Photochemistry ,Thylakoids ,01 natural sciences ,Chloroplast membrane ,Diffusion ,03 medical and health sciences ,Electron transfer ,Spinacia oleracea ,030304 developmental biology ,0303 health sciences ,Spin trapping ,Electron Spin Resonance Spectroscopy ,Hydrogen Peroxide ,Electron transport chain ,Plant Leaves ,Chloroplast ,Light intensity ,Biochemistry ,Thylakoid ,Signal Transduction ,010606 plant biology & botany - Abstract
Hydrogen peroxide (H(2)O(2)) is recognized as an important signalling molecule. There are two important aspects to this function: H(2)O(2) production and its diffusion to its sites of action. The production of H(2)O(2) by photosynthetic electron transport and its ability to diffuse through the chloroplast envelope membranes has been investigated using spin trapping electron paramagnetic resonance spectroscopy and H(2)O(2)-sensitive fluorescence dyes. It was found that, even at low light intensity, a portion of H(2)O(2) produced inside the chloroplasts can leave the chloroplasts thus escaping the effective antioxidant systems located inside the chloroplast. The production of H(2)O(2) by chloroplasts and the appearance of H(2)O(2) outside chloroplasts increased with increasing light intensity and time of illumination. The amount of H(2)O(2) that can be detected outside the chloroplasts has been shown to be up to 5% of the total H(2)O(2) produced inside the chloroplasts at high light intensities. The fact that H(2)O(2) produced by chloroplasts can be detected outside these organelles is an important finding in terms of understanding how chloroplastic H(2)O(2) can serve as a signal molecule.
- Published
- 2010
41. Putative function of cytochrome b559 as a plastoquinol oxidase
- Author
-
Giles N. Johnson, Jochen R. Golecki, Maria Mubarakshina, Anja Krieger-Liszkay, Natallia Bondarava, and Christine Gross
- Subjects
Photoinhibition ,Light ,Cytochrome ,Photosystem II ,Plastoquinone ,Physiology ,Cytochrome b559 ,macromolecular substances ,Plant Science ,Thylakoids ,environment and public health ,Fluorescence ,chemistry.chemical_compound ,Tobacco ,Genetics ,Photosynthesis ,Plant Proteins ,Oxidase test ,Singlet Oxygen ,biology ,Superoxide ,Electron Spin Resonance Spectroscopy ,Photosystem II Protein Complex ,food and beverages ,Cell Biology ,General Medicine ,Cytochrome b Group ,Oxygen ,Plant Leaves ,Chloroplast ,Microscopy, Electron ,chemistry ,Biochemistry ,Thylakoid ,Mutation ,biology.protein ,Oxidoreductases ,Oxidation-Reduction - Abstract
The function of cytochrome b559 (cyt b559) in photosystem II (PSII) was studied in a tobacco mutant in which the conserved phenylalanine at position 26 in the beta-subunit was changed to serine. Young leaves of the mutant showed no significant difference in chloroplast ultra structure or in the amount and activity of PSII, while in mature leaves the size of the grana stacks and the amount of PSII were significantly reduced. Mature leaves of the mutant showed a higher susceptibility to photoinhibition and a higher production of singlet oxygen, as shown by spin trapping electron paramagnetic resonance (EPR) spectroscopy. Oxygen consumption and superoxide production were studied in thylakoid membranes in which the Mn cluster was removed to ensure that all the cyt b559 was present in its low potential form. In thylakoid membranes, from wild-type plants, the larger fraction of superoxide production was 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive. This type of superoxide formation was absent in thylakoid membranes from the mutant. The physiological importance of the plastoquinol oxidation by cyt b559 for photosynthesis is discussed.
- Published
- 2010
42. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth
- Author
-
Ada Linkies, Kerstin Müller, Stephen C. Fry, Robert A. M. Vreeburg, Anja Krieger-Liszkay, and Gerhard Leubner-Metzger
- Subjects
Physiology ,Plant Science ,Biology ,Endosperm ,pollen-tube growth ,Cell wall ,chemistry.chemical_compound ,Botany ,Genetics ,Radicle ,endosperm cap ,Abscisic acid ,mechanisms ,AFSG Quality in Chains ,hydrogen-peroxide ,fungi ,food and beverages ,Faculty of Science\Biological Science ,abscisic-acid ,vitro ,biology.organism_classification ,arabidopsis ,Coleoptile ,chemistry ,Seedling ,Germination ,dormancy alleviation ,Biophysics ,endo-beta-mannanase ,Gibberellin ,nadph oxidase - Abstract
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical ((OH)-O-center dot)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that (OH)-O-center dot is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By H-3 fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic (OH)-O-center dot in radicles and endosperm caps: the production and action of (OH)-O-center dot increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of (OH)-O-center dot attack on polysaccharides were evident. In vivo (OH)-O-center dot attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by (OH)-O-center dot is a controlled action of this type of reactive oxygen species.
- Published
- 2009
43. Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii
- Author
-
Ning Shao, Christoph F. Beck, Anja Krieger-Liszkay, and Stéphane D. Lemaire
- Subjects
Light ,Mutant ,Down-Regulation ,Chlamydomonas reinhardtii ,Plant Science ,Electron Transport ,chemistry.chemical_compound ,Thioredoxins ,Genes, Reporter ,Malate Dehydrogenase (NADP+) ,Genetics ,Animals ,HSP70 Heat-Shock Proteins ,RNA, Messenger ,Photosynthesis ,Thioredoxin ,Promoter Regions, Genetic ,Amitrole ,Luciferases, Renilla ,Regulation of gene expression ,Reporter gene ,biology ,Chlamydomonas ,Algal Proteins ,DCMU ,Hydrogen Peroxide ,Catalase ,biology.organism_classification ,Signaling ,Cell biology ,Gene Expression Regulation ,Biochemistry ,chemistry ,Diuron ,Mutation ,biology.protein ,Original Article ,Oxidation-Reduction ,Signal Transduction - Abstract
A specific signaling role for H(2)O(2) in Chlamydomonas reinhardtii was demonstrated by the definition of a promoter that specifically responded to this ROS. Expression of a nuclear-encoded reporter gene driven by this promoter was shown to depend not only on the level of exogenously added H(2)O(2) but also on light. In the dark, the induction of the reporter gene by H(2)O(2) was much lower than in the light. This lower induction was correlated with an accelerated disappearance of H(2)O(2) from the culture medium in the dark. Due to a light-induced reduction in catalase activity, H(2)O(2) levels in the light remained higher. Photosynthetic electron transport mediated the light-controlled down-regulation of the catalase activity since it was prevented by 3-(3'4'-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. In the presence of light and DCMU, expression of the reporter gene was low while the addition of aminotriazole, a catalase inhibitor, led to a higher induction of the reporter gene by H(2)O(2) in the dark. The role of photosynthetic electron transport and thioredoxin in this regulation was investigated by using mutants deficient in photosynthetic electron flow and by studying the correlation between NADP-malate dehydrogenase and catalase activities. It is proposed that, contrary to expectations, a controlled down-regulation of catalase activity occurs upon a shift of cells from dark to light. This down-regulation apparently is necessary to maintain a certain level of H(2)O(2) required to activate H(2)O(2)-dependent signaling pathways.
- Published
- 2008
44. Origin of cadmium‐induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase
- Author
-
Anja Krieger-Liszkay, Eiri Heyno, and Cornelia Klose
- Subjects
Physiology ,Magnesium Chloride ,chemistry.chemical_element ,Plant Science ,Mitochondrion ,Calcium ,Cell Fractionation ,Plant Roots ,Electron Transport ,Calcium Chloride ,chemistry.chemical_compound ,Cadmium Chloride ,Hydrogen peroxide ,Solanum tuberosum ,chemistry.chemical_classification ,Reactive oxygen species ,NADPH oxidase ,biology ,Superoxide ,Cell Membrane ,NADPH Oxidases ,food and beverages ,Environmental Exposure ,Plants ,Electron transport chain ,Hypocotyl ,Mitochondria ,Kinetics ,Oxidative Stress ,chemistry ,Biochemistry ,biology.protein ,Environmental Pollutants ,Hydroxyl radical ,Soybeans ,Cucumis sativus ,Reactive Oxygen Species - Abstract
* Cadmium (Cd(2+)) is an environmental pollutant that causes increased reactive oxygen species (ROS) production. To determine the site of ROS production, the effect of Cd(2+) on ROS production was studied in isolated soybean (Glycine max) plasma membranes, potato (Solanum tuberosum) tuber mitochondria and roots of intact seedlings of soybean or cucumber (Cucumis sativus). * The effects of Cd(2+) on the kinetics of superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and hydroxyl radical ((*OH) generation were followed using absorption, fluorescence and spin-trapping electron paramagnetic resonance spectroscopy. * In isolated plasma membranes, Cd(2+) inhibited O2*- production. This inhibition was reversed by calcium (Ca(2+)) and magnesium (Mg(2+)). In isolated mitochondria, Cd(2+) increased and H(2)O(2) production. In intact roots, Cd(2+) stimulated H(2)O(2) production whereas it inhibited O2*- and (*)OH production in a Ca(2+)-reversible manner. * Cd(2+) can be used to distinguish between ROS originating from mitochondria and from the plasma membrane. This is achieved by measuring different ROS individually. The immediate (or= 1 h) consequence of exposure to Cd(2+) in vivo is stimulation of ROS production in the mitochondrial electron transfer chain and inhibition of NADPH oxidase activity in the plasma membrane.
- Published
- 2008
45. A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen species produced in vivo
- Author
-
Michael Schroda, Christoph F. Beck, Ning Shao, and Anja Krieger-Liszkay
- Subjects
chemistry.chemical_classification ,Reactive oxygen species ,biology ,Protoporphyrin IX ,Singlet oxygen ,Chlamydomonas reinhardtii ,Cell Biology ,Plant Science ,Dinoterb ,Cycloheximide ,biology.organism_classification ,chemistry.chemical_compound ,chemistry ,Biochemistry ,In vivo ,Genetics ,Hydrogen peroxide - Abstract
A reporter system for the assay of reactive oxygen species (ROS) was developed in Chlamydomonas reinhardtii, a plant model organism well suited for the application of inhibitors and generators of various types of ROS. This system employs various HSP70A promoter segments fused to a Renilla reniformis luciferase gene as a reporter. Transformants with the complete HSP70A promoter were inducible by both hydrogen peroxide and singlet oxygen. Constructs that lacked upstream heat-shock elements (HSEs) were inducible by hydrogen peroxide, indicating that this induction does not require such HSEs. Rather, downstream elements located between positions -81 to -149 with respect to the translation start site appear to be involved. In contrast, upstream sequences are essential for the response to singlet oxygen. Thus, activation by singlet oxygen appears to require promoter elements that are different from those used by hydrogen peroxide. ROS generated endogenously by treatment of the alga with metronidazole, protoporphyrin IX, dinoterb or high light intensities were detected by this reporter system, and distinguished as production of hydrogen peroxide (metronidazole) and singlet oxygen (protoporphyrin IX, dinoterb, high light). This system thus makes it possible to test whether, under varying environmental conditions including the application of abiotic stress, hydrogen peroxide or singlet oxygen or both are produced.
- Published
- 2007
46. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation
- Author
-
Adrien Thurotte, Nir Keren, Adam Faust, Itzhak Ohad, Yossi Paltiel, Ido Eisenberg, Reinat Nevo, Fabrice Rappaport, Ziv Reich, Hagai Raanan, Aaron Kaplan, Anja Krieger-Liszkay, Leeat Bar-Eyal, Pierre Sétif, Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem (HUJ), Applied Physics Department and The Center for Nanoscience and Nanotechnology, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, Department of Biological Chemistry [Rehovot, Israël], Weizmann Institute of Science [Rehovot, Israël], Physiologie membranaire et moléculaire du chloroplaste (PMMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Mécanismes régulateurs chez les organismes photosynthétiques (MROP), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et de Technologies de Saclay (IBITECS), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, The Hebrew University of Jerusalem ( HUJ ), Weizmann Institute of Science, Physiologie membranaire et moléculaire du chloroplaste ( PMMC ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Mécanismes régulateurs chez les organismes photosynthétiques ( MROP ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ), Institut de Biologie et de Technologies de Saclay ( IBITECS ), and Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA )
- Subjects
Photosynthetic reaction centre ,P700 ,[ SDV ] Life Sciences [q-bio] ,Desiccation tolerance ,[SDV]Life Sciences [q-bio] ,Desert (particle physics) ,Biophysics ,Cell Biology ,Biology ,Photosynthesis ,Cyanobacteria ,Biochemistry ,Thylakoid ,Botany ,Phycobilisome ,Desert ,Plastocyanin - Abstract
International audience; Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.
- Published
- 2015
47. Oxidative stress induced by the photosensitizers neutral red (type I) or rose bengal (type II) in the light causes different molecular responses in Chlamydomonas reinhardtii
- Author
-
Anja Krieger-Liszkay, Rik I.L. Eggen, and Beat B. Fischer
- Subjects
Photoinhibition ,Chlamydomonas reinhardtii ,Plant Science ,General Medicine ,Glutathione ,Biology ,medicine.disease_cause ,biology.organism_classification ,Light-harvesting complex ,chemistry.chemical_compound ,Biochemistry ,chemistry ,Thylakoid ,Genetics ,medicine ,Biophysics ,Rose bengal ,Photosensitizer ,Agronomy and Crop Science ,Oxidative stress - Abstract
The molecular defense mechanisms against photooxidative stress in photosynthetic organisms are essential to protect cells from damaging effects of high light illumination and photoinhibition but also to protect against effects by endogenous and exogenous photosensitizers. Here, we analyzed the genetic response of Chlamydomonas reinhardtii to the model type I photosensitizer neutral red (NR) and the type II photosensitizer rose bengal (RB) using DNA-microarrays. Many oxidative and general stress response genes, which were also induced by other oxidative stress conditions, were strongly induced by NR. Only one gene was upregulated by RB, the glutathione (GSH) peroxidase homologous gene Gpxh , which was also induced by NR. In addition NR exposure resulted in the reduced expression of most nuclear photosynthetic genes and subunits of the light harvesting complex (LHC) indicating an effect on the photosynthetic activity. This is supported by a stimulation of singlet oxygen generation in NR-treated thylakoids. Thus, in C. reinhardtii the Gpxh expression is most probably induced by the formation of singlet oxygen in both the NR and RB-treated cells via the activation of a very sensitive and specific sensor, whereas general oxidative stress response mechanisms seem to be involved in the response of most other genes to the type I photooxidative stress.
- Published
- 2005
48. Photosensitizers Neutral Red (Type I) and Rose Bengal (Type II) Cause Light-Dependent Toxicity in Chlamydomonas reinhardtii and Induce the Gpxh Gene via Increased Singlet Oxygen Formation
- Author
-
Rik I. L. Eggen, Beat B. Fischer, and § and Anja Krieger-Liszkay
- Subjects
Neutral red ,Light ,Chlamydomonas reinhardtii ,Thylakoids ,Piperazines ,chemistry.chemical_compound ,Spinacia oleracea ,Stress, Physiological ,Rose bengal ,Animals ,Environmental Chemistry ,Histidine ,Photosensitizer ,Glutathione Peroxidase ,Rose Bengal ,Photosensitizing Agents ,Dose-Response Relationship, Drug ,Singlet Oxygen ,biology ,Singlet oxygen ,Dose-Response Relationship, Radiation ,General Chemistry ,biology.organism_classification ,Up-Regulation ,Oxidative Stress ,Gene Expression Regulation ,chemistry ,Biochemistry ,Neutral Red ,Thylakoid ,Toxicity ,biology.protein ,Peroxidase - Abstract
The connection between the mode of toxic action and the genetic response caused by the type I photosensitizer and photosynthesis inhibitor neutral red (NR) and the type II photosensitizer rose bengal (RB) was investigated in the green alga Chlamydomonas reinhardtii. For both photosensitizers, a light intensity-dependent increase in toxicity and expression of the glutathione peroxidase homologous gene (Gpxh) was found. The toxicity of RB was reduced by the singlet oxygen (1O2) quenchers 1,4-diazabicyclo[2.2.2]octane and L-histidine, and the RB-induced Gpxh expression was stimulated in deuterium oxide-supplemented growth medium. These observations clearly indicate the involvement of 1O2 in both toxicity and the genetic response caused by RB. NR up-regulated the expression of typical oxidative and general stress response genes, probably by a type I mechanism, and also strongly induced the Gpxh expression. The stimulating effect of deuterium oxide in the growth medium suggested the involvement of 1O2 also in the NR-induced response. Indeed, an increased 1O2 formation was detected with EPR-spin trapping in NR-treated spinach thylakoids. However, none of the 102 quenchers could reduce the light-dependent toxicity of NR in C. reinhardtii, indicating that NR has a different mode of toxic action than RB.
- Published
- 2004
49. Efficient Assembly of Photosystem II in Chlamydomonas reinhardtii Requires Alb3.1p, a Homolog of Arabidopsis ALBINO3
- Author
-
Lutz A. Eichacker, Friedrich Ossenbühl, Vera Göhre, Anja Krieger-Liszkay, Jörg Meurer, and Jean-David Rochaix
- Subjects
Photosystem II ,Protein subunit ,Light-Harvesting Protein Complexes ,Chlamydomonas reinhardtii ,macromolecular substances ,Plant Science ,medicine.disease_cause ,Photosystem I ,Thylakoids ,Arabidopsis ,Botany ,medicine ,Animals ,Research Articles ,Sequence Deletion ,Mutation ,biology ,Arabidopsis Proteins ,Photosystem II Protein Complex ,food and beverages ,Cell Biology ,biology.organism_classification ,Membrane ,Thylakoid ,Biophysics - Abstract
Alb3 homologs Oxa1 and YidC have been shown to be required for the integration of newly synthesized proteins into membranes. Here, we show that although Alb3.1p is not required for integration of the plastid-encoded photosystem II core subunit D1 into the thylakoid membrane of Chlamydomonas reinhardtii, the insertion of D1 into functional photosystem II complexes is retarded in the Alb3.1 deletion mutant ac29. Alb3.1p is associated with D1 upon its insertion into the membrane, indicating that Alb3.1p is essential for the efficient assembly of photosystem II. Furthermore, levels of nucleus-encoded light-harvesting proteins are vastly reduced in ac29; however, the remaining antenna systems are still connected to photosystem II reaction centers. Thus, Alb3.1p has a dual function and is required for the accumulation of both nucleus- and plastid-encoded protein subunits in photosynthetic complexes of C. reinhardtii.
- Published
- 2004
50. Polyphenolic Allelochemicals from the Aquatic Angiosperm Myriophyllum spicatumInhibit Photosystem II
- Author
-
Elisabeth M. Gross, Eva Leu, Charilaos Goussias, and Anja Krieger-Liszkay
- Subjects
Spinacia ,biology ,Photosystem II ,Physiology ,food and beverages ,Plant Science ,biology.organism_classification ,Photosynthesis ,Photosystem I ,chemistry.chemical_compound ,chemistry ,Biochemistry ,Thylakoid ,Tellimagrandin II ,Genetics ,Spinach ,Photosystem - Abstract
Myriophyllum spicatum (Haloragaceae) is a highly competitive freshwater macrophyte that produces and releases algicidal and cyanobactericidal polyphenols. Among them, β-1,2,3-tri-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-d-glucose (tellimagrandin II) is the major active substance and is an effective inhibitor of microalgal exoenzymes. However, this mode of action does not fully explain the strong allelopathic activity observed in bioassays. Lipophilic extracts of M. spicatum inhibit photosynthetic oxygen evolution of intact cyanobacteria and other photoautotrophs. Fractionation of the extract provided evidence for tellimagrandin II as the active compound. Separate measurements of photosystem I and II activity with spinach (Spinacia oleracea) thylakoid membranes indicated that the site of inhibition is located at photosystem II (PSII). In thermoluminescence measurements with thylakoid membranes and PSII-enriched membrane fragments M. spicatum extracts shifted the maximum temperature of the B-band (S2QB −recombination) to higher temperatures. Purified tellimagrandin II in concentrations as low as 3 μm caused a comparable shift of the B-band. This demonstrates that the target site of this inhibitor is different from the QB-binding site, a common target of commercial herbicides like 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Measurements with electron paramagnetic resonance spectroscopy suggest a higher redox midpoint potential for the non-heme iron, located between the primary and the secondary quinone electron acceptors, QA and QB. Thus, tellimagrandin II has at least two modes of action, inhibition of exoenzymes and inhibition of PSII. Multiple target sites are a common characteristic of many potent allelochemicals.
- Published
- 2002
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.