1. NatB-Mediated N-Terminal Acetylation Affects Growth and Biotic Stress Responses
- Author
-
Irmgard Sinning, Laura Armbruster, Carsten Sticht, Thierry Meinnel, Carmela Giglione, Dominik Layer, Markus Wirtz, Ruediger Hell, Willy V. Bienvenut, Iwona Stephan, Eric Linster, Monika Huber, Karine Lapouge, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Maturation des proteines, destinée cellulaire et thérapeutique (PROMTI), Département Biologie des Génomes (DBG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-13-BSV6-0004,eNergiome,N-terminome des organelles de conversion de l'énergie: Une meilleure comprehension de la maturation des protéines impliquées dans ces organelles(2013), and ANR-10-LABX-0040,SPS,Saclay Plant Sciences(2010)
- Subjects
0106 biological sciences ,NatB complex ,Proteome ,Physiology ,[SDV]Life Sciences [q-bio] ,Protein subunit ,Mutant ,Arabidopsis ,Plant Science ,In Vitro Techniques ,medicine.disease_cause ,01 natural sciences ,Biochemistry and Metabolism ,Acetyltransferases ,Osmotic Pressure ,Stress, Physiological ,Catalytic Domain ,Protein targeting ,Genetics ,medicine ,Arabidopsis thaliana ,N-Terminal Acetyltransferase B ,2. Zero hunger ,biology ,Arabidopsis Proteins ,Chemistry ,Gene Expression Profiling ,Computational Biology ,Acetylation ,Biotic stress ,biology.organism_classification ,Mutagenesis, Insertional ,Gene Ontology ,Biochemistry ,Seedlings ,010606 plant biology & botany - Abstract
International audience; N-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1. Quantitative N-terminomics of approximately 1,000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N-termini starting with the initiator methionine followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity towards osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.
- Published
- 2019
- Full Text
- View/download PDF