1. Physical controls on phytoplankton size structure, photophysiology and suspended particles in a Norwegian biological hotspot
- Author
-
Matilde Skogen Chauton, Trygve Olav Fossum, Emlyn John Davies, Kristine Steinhovden, Ingrid H. Ellingsen, Martin Ludvigsen, Geir Johnsen, Kanna Rajan, and Glaucia Moreira Fragoso
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,biology ,010604 marine biology & hydrobiology ,Phytodetritus ,Pellets ,Stratification (water) ,Geology ,Aquatic Science ,Plankton ,biology.organism_classification ,01 natural sciences ,Zooplankton ,Diatom ,Water column ,Oceanography ,Phytoplankton ,Environmental science ,0105 earth and related environmental sciences - Abstract
The impact of the physical environment and phytoplankton size on particle types (zooplankton, biogenic matter or phytodetritus) in the water column is poorly understood. Here, we investigate how hydrography (e.g. water column stratification) impacts phytoplankton size and photophysiology across a productive coastal bank area. Additionally, we investigate how the physical environment and phytoplankton size structure influence the concentrations of plankton (e.g. copepods and diatom chains), biogenic forms (fecal pellets) and other particles (minerals, aggregates or phytodetritus) using discrete samples and in-situ optical instruments. Microphytoplankton (>20 µm), including many chain-forming diatoms, dominated (average > 90% of total size fraction) in un-stratified waters of the bank. Phytoplankton within the bank region also required more irradiance to saturate photosynthesis, as indicated by the onset light saturation parameter (Ek, average 297 µmol photons m−2 s−1), suggesting high plasticity to a dynamic light environment. Conversely, the contribution of nano- and picophytoplankton ( 1 × 103 counts m−3), fecal pellets (>1 × 104 counts m−3) and ammonium (>0.5 µM) within the bank compared to off-bank regions, indicated that copepods were actively grazing in this region. Low stratification (average stratification index (SI) 5 × 105 counts m−3) within the bank when compared to off-bank (SI off-bank > 10 × 10−3 kg m−4). Our results, obtained using automated techniques measured in-situ, represent an innovative approach to demonstrate that phytoplankton size and stratification influence the nature of particles found in the water column (including aggregates, fecal pellets and grazer abundances).
- Published
- 2019
- Full Text
- View/download PDF