641 results on '"De Meyer, A."'
Search Results
2. A field study on correlations between macroscopic gut health scoring, histological measurements and performance parameters in broilers
- Author
-
F. Van Immerseel, Moniek Ringenier, Nele Caekebeke, T. Van Limbergen, F. De Meyer, Jeroen Dewulf, Venessa Eeckhaut, and R. Ducatelle
- Subjects
Gastrointestinal tract ,General Immunology and Microbiology ,Broiler ,Histology ,Biology ,medicine.disease ,Feed conversion ratio ,Lesion ,Coccidiosis ,Cross-Sectional Studies ,Animal science ,medicine.anatomical_structure ,Food Animals ,medicine ,Duodenum ,Animals ,Animal Science and Zoology ,medicine.symptom ,Chickens ,Field conditions - Abstract
Optimal intestinal health is a prerequisite for sustainable poultry production. Intestinal health can be evaluated by scoring macroscopic intestinal abnormalities and by histological measurements. The aim of this study was to evaluate correlations between macroscopic gut appearance scoring (GAS), coccidiosis lesion scoring, histological measurements and performance parameters in broilers under field conditions. Therefore, a cross-sectional study was performed on 50 broiler farms where birds were sampled at 28 days of age. The GAS was determined by scoring the absence or presence of 10 macroscopically visible parameters of the gastrointestinal tract, yielding a GAS between 0 and 10, with 0 meaning no gut abnormalities. On individual bird level, when birds had a GAS score of 6 or higher, significantly shorter villi were found in the duodenum. Also, CD3+ T-lymphocyte area percentage in the duodenal mucosa was significantly negatively correlated to villus length. On farm level, the average feed conversion ratio (FCR) was 1.59 ± 0.04 [1.52-1.73]. However, no correlations were found between the GAS at the age of 28 days and the prevalence of coccidiosis, nor did coccidiosis lesion scoring correlate with the FCR. Also, a higher GAS could not be associated with a higher FCR. In conclusion, on all farms a certain degree of macroscopic visible gut and coccidiosis lesions were present in birds of 28 days of age, while this did not correlate with the FCR. This suggests that broilers are able to cope with a certain level of gut damage before it influences the overall performance.
- Published
- 2021
- Full Text
- View/download PDF
3. Eating eggplants as a cucurbit feeder: Dietary shifts affect the gut microbiome of the melon fly Zeugodacus cucurbitae (Diptera, Tephritidae)
- Author
-
Wouter Hendrycks, Hélène Delatte, Laura Moquet, Kostas Bourtzis, Nele Mullens, Marc De Meyer, Thierry Backeljau, Massimiliano Virgilio, Royal Museum for Central Africa [Tervuren] (RMCA), University of Antwerp (UA), Evolutionary Ecology Group, Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Université de La Réunion (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Joint FAO/IAEA Programme - Nuclear Techniques in Food and Agriculture, Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO)-International Atomic Energy Agency [Vienna] (IAEA), Royal Belgian Institute of Natural Sciences (RBINS), and This study was supported by funds from a 'Bijzonder Onderzoeksfonds' grant from the University of Antwerp, a 'Fonds voor wetenschappelijk onderzoek' Ph.D. fellowship of the FWO (11G9221N), and was supported by the International Atomic Energy Agency (IAEA, Vienna) through the technical contract n. 20876 'Comparative Microbiomics of African Fruit Flies' (CMAFF).
- Subjects
gut microbiota ,Flore microbienne ,[SDV]Life Sciences [q-bio] ,Tephritidae ,Relation plante animal ,L60 - Taxonomie et géographie animales ,Relation hôte pathogène ,host shift ,plant-insect interactions ,wild populations ,H10 - Ravageurs des plantes ,Microbiology ,Diet ,Gastrointestinal Microbiome ,Cucurbitaceae ,Animals ,Solanum melongena ,Biology - Abstract
All raw sequence read data are available from the European Nucleotide Archive under the accession number PRJEB49793: https://www.ebi.ac.uk/ena/browser/view/PRJEB49793. Sample data set, sample metadata, and codes for analysis are available on GitHub: https://github.com/wouterhendrycks/tephritid_microbiome_host_switch_project and in Zenodo: https://doi.org/10.5281/zenodo.6810766.Supporting Information table (Differential abundance analysis of bacterial genera between larval microbiomes from larvae between different host plants and between different sites using ALDEx2) is available in the Zenodo repository at https://doi.org/10.5281/zenodo.6811204).; International audience; Graphical Abstract:We investigated how the gut microbiome composition changes in a cucurbit-feeding fly Zeugodacus cucurbitae when it feeds on atypical solanaceous hosts instead of typical cucurbit hosts. Wild parental (F0) adults and semiwild first filial (F1) larvae of Z. cucurbitae collected from two locations in Réunion Island showed heterogeneous microbiome responses across host plants. This study shows how local processes and host plants can strongly affect the composition of the insect microbiome and the importance of using adequately sampled populations. Figure: https://onlinelibrary.wiley.com/cms/asset/10ec8f92-c6b0-4f27-aaf0-0ed246f23aa9/mbo31307-gra-0001-m.jpgAbstract: While contemporary changes in feeding preferences have been documented in phytophagous insects, the mechanisms behind these processes remain to be fully clarified. In this context, the insect gut microbiome plays a central role in adaptation to novel host plants. The cucurbit frugivorous fruit fly Zeugodacus cucurbitae (Diptera, Tephritidae) has occasionally been reported on "unconventional" host plants from different families, including Solanaceae. In this study, we focus on wild parental (F-0) adults and semiwild first filial (F-1) larvae of Z. cucurbitae from multiple sites in La Reunion and explore how the gut microbiome composition changes when this fly is feeding on a noncucurbit host (Solanum melongena). Our analyses show nonobvious gut microbiome responses following the F-0-F-1 host shift and the importance of not just diet but also local effects, which heavily affected the diversity and composition of microbiomes. We identified the main bacterial genera responsible for differences between treatments. These data further stress the importance of a careful approach when drawing general conclusions based on laboratory populations or inadequately replicated field samples.
- Published
- 2022
- Full Text
- View/download PDF
4. Neuregulin-1 compensates for endothelial nitric oxide synthase deficiency
- Author
-
Vincent F.M. Segers, Jhana O. Hendrickx, Hadis Shakeri, Jente R A Boen, Sofie De Moudt, Arthur J. A. Leloup, Pieter-Jan Guns, Griet Jacobs, Guido R.Y. De Meyer, and Gilles W. De Keulenaer
- Subjects
medicine.medical_specialty ,Endothelial nitric oxide synthase ,biology ,Physiology ,business.industry ,Renal Hypertrophy ,medicine.disease ,biology.organism_classification ,Angiotensin II ,Muscle hypertrophy ,Endocrinology ,Fibrosis ,Enos ,Physiology (medical) ,Internal medicine ,mental disorders ,medicine ,biology.protein ,Secretion ,Human medicine ,Neuregulin 1 ,Cardiology and Cardiovascular Medicine ,business - Abstract
Endothelial cells (ECs) secrete different paracrine signals that modulate the function of adjacent cells; two examples of these paracrine signals are nitric oxide (NO) and neuregulin-1 (NRG1), a cardioprotective growth factor. Currently, it is undetermined whether one paracrine factor can compensate for the loss of another. Herein, we hypothesized that NRG1 can compensate for endothelial NO synthase (eNOS) deficiency. We characterized eNOS null and wild-type (WT) mice by cardiac ultrasound and histology and we determined circulating NRG1 levels. In a separate experiment, eight groups of mice were divided into four groups of eNOS null mice and WT mice; half of the mice received angiotensin II (ANG II) to induce a more severe phenotype. Mice were randomized to daily injections with NRG1 or vehicle for 28 days. eNOS deficiency increased NRG1 plasma levels, indicating that ECs increase their NRG1 expression when NO production is deleted. eNOS deficiency also increased blood pressure, lowered heart rate, induced cardiac fibrosis, and affected diastolic function. In eNOS null mice, ANG II administration not only increased cardiac fibrosis but also induced cardiac hypertrophy and renal fibrosis. NRG1 administration prevented cardiac and renal hypertrophy and fibrosis caused by ANG II infusion and eNOS deficiency. Moreover, Nrg1 expression in the myocardium is shown to be regulated by miR-134. This study indicates that administration of endothelium-derived NRG1 can compensate for eNOS deficiency in the heart and kidneys. NEW & NOTEWORTHY ECs compensate for eNOS deficiency by increasing the secretion of NRG1. NRG1 administration prevents cardiac and renal hypertrophy and fibrosis caused by ANG II infusion and eNOS deficiency. NRG1 expression is regulated by miR-134.
- Published
- 2021
- Full Text
- View/download PDF
5. Revision of the Afrotropical species of the hover fly genus Mesembrius Rondani (Diptera, Syrphidae) using morphological and molecular data
- Author
-
Kurt Jordaens, Scott Kelso, Jeffrey H. Skevington, Georg Goergen, and Marc De Meyer
- Subjects
0106 biological sciences ,0301 basic medicine ,Insecta ,flower fly ,Arthropoda ,010607 zoology ,Zoology ,01 natural sciences ,DNA barcoding ,Magnoliopsida ,03 medical and health sciences ,Afrotropical Region ,taxonomy ,Mesembrius ,Genus ,Animalia ,Saxifragoideae ,Syrphidae ,Plantae ,Saxifragales ,Ecology, Evolution, Behavior and Systematics ,new species ,Eristalini ,biology ,Diptera ,Saxifragaceae ,Saxifraga ,Eristalinae ,biology.organism_classification ,Biota ,Tracheophyta ,030104 developmental biology ,Regulus ,QL1-991 ,Dna barcodes ,Africa ,Helophilina ,Animal Science and Zoology ,Taxonomy (biology) ,Subgenus - Abstract
The Afrotropical representatives of the hover fly genusMesembriusRondani, 1857 (Diptera) are divided into two subgenera, namelyMesembriuss.s. andVadonimyiaSéguy, 1951 and, in this present work, the subgenus Mesembrius s.s. is revised. A total of 23Mesembriuss.s. species are recognised for the Afrotropics. Known species are re-described and six species new to science are described:Mesembrius arcuatussp. nov.,M. copelandisp. nov.,M. longipilosussp. nov.,M. sulcussp. nov.,M. tibialissp. nov.andM. vockerothisp. nov.Mesembrius africanus(Verrall, 1898) is considered a junior synonym ofM. senegalensis(Macquart, 1842),M. cteniferHull, 1941 a junior synonym ofM. caffer(Loew, 1858),M. lagopus(Loew, 1869) a junior synonym ofM. capensis(Macquart, 1842) andM. platytarsisCurran, 1929 a junior synonym ofM. simplicipesCurran, 1929. The females ofMesembrius chapiniCurran, 1939,M. rexCurran, 1927 andM. regulus(Hull, 1937) are described for the first time. Lectotypes are designated forMesembrius caffer,M. capensis,M. cyanipennis(Bezzi, 1915),M. minor(Bezzi, 1915),M. senegalensis,M. strigilatus(Bezzi, 1912) andM. tarsatus(Bigot, 1883). Separate identification keys for males and females are presented. We obtained 236 DNA barcodes for 18 species. The relationships amongst the differentMesembriusspecies are briefly discussed, based on morphological and DNA barcode data.
- Published
- 2021
6. Chitin in Strawberry Cultivation: Foliar Growth and Defense Response Promotion, but Reduced Fruit Yield and Disease Resistance by Nutrient Imbalances
- Author
-
J De Visscher, Sarah Ommeslag, Peter Dawyndt, Bart Vandecasteele, Lieven Clement, Bruno Verstraeten, Jane Debode, T De Meyer, C. De Tender, and Tina Kyndt
- Subjects
Agriculture and Food Sciences ,0106 biological sciences ,0301 basic medicine ,Physiology ,Chitin ,01 natural sciences ,chemistry.chemical_compound ,Nutrient ,INFECTION ,Nutritional Physiological Phenomena ,CHITOSAN ,Disease Resistance ,Botrytis cinerea ,TRANSCRIPTION FACTOR GENES ,Jasmonic acid ,food and beverages ,RNA sequencing ,Phosphorus ,General Medicine ,QR1-502 ,Horticulture ,Shoot ,Botrytis ,Fertilizer ,AMENDMENTS ,Mortierella ,EXPRESSION ,Nitrogen ,PEAT ,Biology ,engineering.material ,Plant disease resistance ,chitin ,Fragaria ,Microbiology ,03 medical and health sciences ,growth promotion ,BOTRYTIS-CINEREA ,priming ,fungi ,RECOGNITION ,Botany ,Nutrients ,biology.organism_classification ,SOIL ,Plant Leaves ,Fragaria ananassa ,030104 developmental biology ,chemistry ,PLANT-GROWTH ,Fruit ,QK1-989 ,metabarcoding ,engineering ,Agronomy and Crop Science ,010606 plant biology & botany - Abstract
Strawberry cultivation is associated with high mineral fertilizer doses and extensive use of chemical plant protection products. Based on previous research, we expected that chitin application to peat substrate would increase the nutrient availability and activate the plant systemic defense response, resulting in higher strawberry yields and fewer disease symptoms. We set up two experiments in which the temporal variability and differences in initial nutrient concentrations of the growing media were taken into account. Chitin treatment resulted in the attraction of plant growth–promoting fungi toward the plant root, such as species from genera Mortierella and Umbelopsis. In addition, by the end of the experiments 87 mg of mineral nitrogen (N) per liter of substrate was mineralized, which can be related to the observed increase in plant shoot biomass. This, however, led to nutrient imbalances in plant shoots and fruit; N concentration in the leaves increased over 30%, exceeding the optimal range, while phosphorous (P) and potassium (K) deficiencies occurred, with concentrations lower than 50% of the optimal range. This may explain the decreased fruit yield and disease resistance of the fruit toward Botrytis cinerea. In contrast, chitin caused a clear defense priming effect in the strawberry leaves, with a strong induction of the jasmonic acid response, resulting in fewer foliar disease symptoms. Chitin causes positive effects on shoot growth and foliar disease resistance, but caution needs to be taken for nutrient imbalances leading to negative influences on root growth, fruit production, and disease susceptibility toward B. cinerea. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
- Published
- 2021
7. Genome‐wide shifts in histone modifications at early stage of rice infection with Meloidogyne graminicola
- Author
-
Tina Kyndt, Tim De Meyer, Mohammad Reza Atighi, and Bruno Verstraeten
- Subjects
0106 biological sciences ,0301 basic medicine ,Agriculture and Food Sciences ,Histone-modifying enzymes ,Methyltransferase ,nematode ,Lysine ,Soil Science ,Oryza sativa ,Plant Science ,01 natural sciences ,Genome ,Plant Roots ,Epigenesis, Genetic ,Host-Parasite Interactions ,Transcriptome ,Histones ,03 medical and health sciences ,ChIP-Seq ,ChIP‐Seq ,Gene expression ,Animals ,Epigenetics ,Tylenchoidea ,Gene ,Psychological repression ,Molecular Biology ,Plant Diseases ,Genetics ,biology ,epigenetics ,histone modifications ,Gene Expression Profiling ,food and beverages ,Oryza ,Original Articles ,Cell biology ,Histone Code ,030104 developmental biology ,Histone ,biology.protein ,gene expression ,Original Article ,Histone deacetylase ,Agronomy and Crop Science ,Protein Processing, Post-Translational ,010606 plant biology & botany - Abstract
Epigenetic processes play a crucial role in the regulation of plant stress responses, but their role in plant–pathogen interactions remains poorly understood. Although histone‐modifying enzymes have been observed to be deregulated in galls induced by root‐knot nematodes (RKN, Meloidogyne graminicola) in rice, their influence on plant defence and their genome‐wide impact has not been comprehensively investigated. First, the role of histone modifications in plant–nematode interactions was confirmed by pharmacological inhibition of histone‐modifying enzymes, which all significantly affected rice susceptibility to RKN. For a more specific view, three histone marks, H3K9ac, H3K9me2, and H3K27me3, were subsequently studied by chromatin‐immunoprecipitation‐sequencing on RKN‐induced galls at 3 days postinoculation. While levels of H3K9ac and H3K27me3 were strongly enriched, H3K9me2 was generally depleted in galls versus control root tips. Differential histone peaks were generally associated with plant defence‐related genes. Transcriptome analysis using RNA‐Seq and RT‐qPCR‐based validation revealed that genes marked with H3K9ac or H3K9me2 showed the expected activation or repression gene expression pattern, but this was not the case for H3K27me3 marks. Our results indicate that histone modifications respond dynamically to RKN infection, and that posttranslational modifications mainly at H3K9 specifically target plant defence‐related genes., Histone modifications respond dynamically to root‐knot nematode infection in rice, with levels of H3K9ac and H3K27me3 enriched, and H3K9me2 generally depleted, in galls versus control root tips.
- Published
- 2021
8. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1
- Author
-
Klionsky, Daniel, Abdel-Aziz, Amal Kamal, Abdelfatah, Sara, Abdellatif, Mahmoud, Abdoli, Asghar, Abel, Steffen, Abeliovich, Hagai, Abildgaard, Marie, Abudu, Yakubu Princely, Acevedo-Arozena, Abraham, Adamopoulos, Iannis, Adeli, Khosrow, Adolph, Timon, Adornetto, Annagrazia, Aflaki, Elma, Agam, Galila, Agarwal, Anupam, Aggarwal, Bharat, Agnello, Maria, Agostinis, Patrizia, Agrewala, Javed, Agrotis, Alexander, Aguilar, Patricia, Ahmad, S Tariq, Ahmed, Zubair, Ahumada-Castro, Ulises, Aits, Sonja, Aizawa, Shu, Akkoc, Yunus, Akoumianaki, Tonia, Akpinar, Hafize Aysin, Al-Abd, Ahmed, Al-Akra, Lina, Al-Gharaibeh, Abeer, Alaoui-Jamali, Moulay, Alberti, Simon, Alcocer-Gómez, Elísabet, Alessandri, Cristiano, Ali, Muhammad, Alim Al-Bari, M Abdul, Aliwaini, Saeb, Alizadeh, Javad, Almacellas, Eugènia, Almasan, Alexandru, Alonso, Alicia, Alonso, Guillermo, Altan-Bonnet, Nihal, Altieri, Dario, Álvarez, Élida, Alves, Sara, Alves Da Costa, Cristine, Alzaharna, Mazen, Amadio, Marialaura, Amantini, Consuelo, Amaral, Cristina, Ambrosio, Susanna, Amer, Amal, Ammanathan, Veena, An, Zhenyi, Andersen, Stig, Andrabi, Shaida, Andrade-Silva, Magaiver, Andres, Allen, Angelini, Sabrina, Ann, David, Anozie, Uche, Ansari, Mohammad, Antas, Pedro, Antebi, Adam, Antón, Zuriñe, Anwar, Tahira, Apetoh, Lionel, Apostolova, Nadezda, Araki, Toshiyuki, Araki, Yasuhiro, Arasaki, Kohei, Araújo, Wagner, Araya, Jun, Arden, Catherine, Arévalo, Maria-Angeles, Arguelles, Sandro, Arias, Esperanza, Arikkath, Jyothi, Arimoto, Hirokazu, Ariosa, Aileen, Armstrong-James, Darius, Arnauné-Pelloquin, Laetitia, Aroca, Angeles, Arroyo, Daniela, Arsov, Ivica, Artero, Rubén, Asaro, Dalia Maria Lucia, Aschner, Michael, Ashrafizadeh, Milad, Ashur-Fabian, Osnat, Atanasov, Atanas, Au, Alicia, Auberger, Patrick, Auner, Holger, Aurelian, Laure, Autelli, Riccardo, Avagliano, Laura, Ávalos, Yenniffer, Aveic, Sanja, Aveleira, Célia Alexandra, Avin-Wittenberg, Tamar, Aydin, Yucel, Ayton, Scott, Ayyadevara, Srinivas, Azzopardi, Maria, Baba, Misuzu, Backer, Jonathan, Backues, Steven, Bae, Dong-Hun, Bae, Ok-Nam, Bae, Soo Han, Baehrecke, Eric, Baek, Ahruem, Baek, Seung-Hoon, Baek, Sung Hee, Bagetta, Giacinto, Bagniewska-Zadworna, Agnieszka, Bai, Hua, Bai, Jie, Bai, Xiyuan, Bai, Yidong, Bairagi, Nandadulal, Baksi, Shounak, Balbi, Teresa, Baldari, Cosima, Balduini, Walter, Ballabio, Andrea, Ballester, Maria, Balazadeh, Salma, Balzan, Rena, Bandopadhyay, Rina, Banerjee, Sreeparna, Banerjee, Sulagna, Bánréti, Ágnes, Bao, Yan, Baptista, Mauricio, Baracca, Alessandra, Barbati, Cristiana, Bargiela, Ariadna, Barilà, Daniela, Barlow, Peter, Barmada, Sami, Barreiro, Esther, Barreto, George, Bartek, Jiri, Bartel, Bonnie, Bartolome, Alberto, Barve, Gaurav, Basagoudanavar, Suresh, Bassham, Diane, Bast, Robert, Basu, Alakananda, Batoko, Henri, Batten, Isabella, Baulieu, Etienne, Baumgarner, Bradley, Bayry, Jagadeesh, Beale, Rupert, Beau, Isabelle, Beaumatin, Florian, Bechara, Luiz, Beck, George, Beers, Michael, Begun, Jakob, Behrends, Christian, Behrens, Georg, Bei, Roberto, Bejarano, Eloy, Bel, Shai, Behl, Christian, Belaid, Amine, Belgareh-Touzé, Naïma, Bellarosa, Cristina, Belleudi, Francesca, Belló Pérez, Melissa, Bello-Morales, Raquel, Beltran, Jackeline Soares de Oliveira, Beltran, Sebastián, Benbrook, Doris Mangiaracina, Bendorius, Mykolas, Benitez, Bruno, Benito-Cuesta, Irene, Bensalem, Julien, Berchtold, Martin, Berezowska, Sabina, Bergamaschi, Daniele, Bergami, Matteo, Bergmann, Andreas, Berliocchi, Laura, Berlioz-Torrent, Clarisse, Bernard, Amélie, Berthoux, Lionel, Besirli, Cagri, Besteiro, Sebastien, Betin, Virginie, Beyaert, Rudi, Bezbradica, Jelena, Bhaskar, Kiran, Bhatia-Kissova, Ingrid, Bhattacharya, Resham, Bhattacharya, Sujoy, Bhattacharyya, Shalmoli, Bhuiyan, Md Shenuarin, Bhutia, Sujit Kumar, Bi, Lanrong, Bi, Xiaolin, Biden, Trevor, Bijian, Krikor, Billes, Viktor, Binart, Nadine, Bincoletto, Claudia, Birgisdottir, Asa, Bjorkoy, Geir, Blanco, Gonzalo, Blas-Garcia, Ana, Blasiak, Janusz, Blomgran, Robert, Blomgren, Klas, Blum, Janice, Boada-Romero, Emilio, Boban, Mirta, Boesze-Battaglia, Kathleen, Boeuf, Philippe, Boland, Barry, Bomont, Pascale, Bonaldo, Paolo, Bonam, Srinivasa Reddy, Bonfili, Laura, Bonifacino, Juan, Boone, Brian, Bootman, Martin, Bordi, Matteo, Borner, Christoph, Bornhauser, Beat, Borthakur, Gautam, Bosch, Jürgen, Bose, Santanu, botana, luis, Botas, Juan, Boulanger, Chantal, Boulton, Michael, Bourdenx, Mathieu, Bourgeois, Benjamin, Bourke, Nollaig, Bousquet, Guilhem, Boya, Patricia, Bozhkov, Peter, Bozi, Luiz, Bozkurt, Tolga, Brackney, Doug, Brandts, Christian, Braun, Ralf, Braus, Gerhard, Bravo-Sagua, Roberto, Bravo-San Pedro, José, Brest, Patrick, Bringer, Marie-Agnès, Briones-Herrera, Alfredo, Broaddus, V Courtney, Brodersen, Peter, Brodsky, Jeffrey, Brody, Steven, Bronson, Paola, Bronstein, Jeff, Brown, Carolyn, Brown, Rhoderick, Brum, Patricia, Brumell, John, Brunetti-Pierri, Nicola, Bruno, Daniele, Bryson-Richardson, Robert, Bucci, Cecilia, Buchrieser, Carmen, Bueno, Marta, Buitrago-Molina, Laura Elisa, Buraschi, Simone, Buch, Shilpa, Buchan, J Ross, Buckingham, Erin, Budak, Hikmet, Budini, Mauricio, Bultynck, Geert, Burada, Florin, Burgoyne, Joseph, Burón, M Isabel, Bustos, Victor, Büttner, Sabrina, Butturini, Elena, Byrd, Aaron, Cabas, Isabel, Cabrera-Benitez, Sandra, Cadwell, Ken, Cai, Jingjing, Cai, Lu, Cai, Qian, Cairó, Montserrat, Calbet, Jose, Caldwell, Guy, Caldwell, Kim, Call, Jarrod, Calvani, Riccardo, Calvo, Ana, Calvo-Rubio Barrera, Miguel, Camara, Niels OS, Camonis, Jacques, Camougrand, Nadine, Campanella, Michelangelo, Campbell, Edward, Campbell-Valois, François-Xavier, Campello, Silvia, Campesi, Ilaria, Campos, Juliane, Camuzard, Olivier, Cancino, Jorge, Candido de Almeida, Danilo, Canesi, Laura, Caniggia, Isabella, Canonico, Barbara, Cantí, Carles, Cao, Bin, Caraglia, Michele, Caramés, Beatriz, Carchman, Evie, Cardenal-Muñoz, Elena, Cardenas, Cesar, Cardenas, Luis, Cardoso, Sandra, Carew, Jennifer, Carle, Georges, Carleton, Gillian, Carloni, Silvia, Carmona-Gutierrez, Didac, Carneiro, Leticia, Carnevali, Oliana, Carosi, Julian, Carra, Serena, Carrier, Alice, Carrier, Lucie, Carroll, Bernadette, Carter, A Brent, Carvalho, Andreia Neves, Casanova, Magali, Casas, Caty, Casas, Josefina, Cassioli, Chiara, Castillo, Eliseo, Castillo, Karen, Castillo-Lluva, Sonia, Castoldi, Francesca, Castori, Marco, Castro, Ariel, Castro-Caldas, Margarida, Castro-Hernandez, Javier, Castro-Obregon, Susana, Catz, Sergio, Cavadas, Claudia, Cavaliere, Federica, Cavallini, Gabriella, Cavinato, Maria, Cayuela, Maria, Cebollada Rica, Paula, Cecarini, Valentina, Cecconi, Francesco, Cechowska-Pasko, Marzanna, Cenci, Simone, Ceperuelo-Mallafré, Victòria, Cerqueira, João, Cerutti, Janete, Cervia, Davide, Cetintas, Vildan Bozok, Cetrullo, Silvia, Chae, Han-Jung, Chagin, Andrei, Chai, Chee-Yin, Chakrabarti, Gopal, Chakrabarti, Oishee, Chakraborty, Tapas, Chakraborty, Trinad, Chami, mounia, Chamilos, Georgios, Chan, David, Chan, Edmond, Chan, Edward, Chan, H.Y. Edwin, Chan, Helen, Chan, Hung, Chan, Matthew, Chan, Yau Sang, Chandra, Partha, Chang, Chih-Peng, Chang, Chunmei, Chang, Hao-Chun, Chang, Kai, Chao, Jie, Chapman, Tracey, Charlet-Berguerand, Nicolas, Chatterjee, Samrat, Chaube, Shail, Chaudhary, Anu, Chauhan, Santosh, Chaum, Edward, Checler, Frédéric, Cheetham, Michael, Chen, Chang-Shi, Chen, Guang-Chao, Chen, Jian-Fu, Chen, Liam, Chen, Leilei, Chen, Lin, Chen, Mingliang, Chen, Mu-Kuan, Chen, Ning, Chen, Quan, Chen, Ruey-Hwa, Chen, Shi, Chen, Wei, Chen, Weiqiang, Chen, Xin-Ming, Chen, Xiong-Wen, Chen, Xu, Chen, Yan, Chen, Ye-Guang, Chen, Yingyu, Chen, Yongqiang, Chen, Yu-Jen, Chen, Yue-Qin, Chen, Zhefan Stephen, Chen, Zhi, Chen, Zhi-Hua, Chen, Zhijian, Chen, Zhixiang, Cheng, Hanhua, Cheng, Jun, Cheng, Shi-Yuan, Cheng, Wei, Cheng, Xiaodong, Cheng, Xiu-Tang, Cheng, Yiyun, Cheng, Zhiyong, Chen, Zhong, Cheong, Heesun, Cheong, Jit Kong, Chernyak, Boris, Cherry, Sara, Cheung, Chi Fai Randy, Cheung, Chun Hei Antonio, Cheung, King-Ho, Chevet, Eric, Chi, Richard, Chiang, Alan Kwok Shing, Chiaradonna, Ferdinando, Chiarelli, Roberto, Chiariello, Mario, Chica, Nathalia, Chiocca, Susanna, Chiong, Mario, Chiou, Shih-Hwa, Chiramel, Abhilash, Chiurchiù, Valerio, Cho, Dong-Hyung, Choe, Seong-Kyu, Choi, Augustine, Choi, Mary, Choudhury, Kamalika Roy, Chow, Norman, Chu, Charleen, Chua, Jason, Chua, John Jia En, Chung, Hyewon, Chung, Kin Pan, Chung, Seockhoon, Chung, So-Hyang, Chung, Yuen-Li, Cianfanelli, Valentina, Ciechomska, Iwona, Cifuentes, Mariana, Cinque, Laura, Cirak, Sebahattin, Cirone, Mara, Clague, Michael, Clarke, Robert, Clementi, Emilio, Coccia, Eliana, Codogno, Patrice, Cohen, Ehud, Cohen, Mickael, Colasanti, Tania, Colasuonno, Fiorella, Colbert, Robert, Colell, Anna, Čolić, Miodrag, Coll, Nuria, Collins, Mark, Colombo, María, Colón-Ramos, Daniel, Combaret, Lydie, Comincini, Sergio, Cominetti, Márcia, Consiglio, Antonella, Conte, Andrea, Conti, Fabrizio, Contu, Viorica Raluca, Cookson, Mark, Coombs, Kevin, Coppens, Isabelle, Corasaniti, Maria Tiziana, Corkery, Dale, Cordes, Nils, Cortese, Katia, Costa, Maria do Carmo, Costantino, Sarah, Costelli, Paola, Coto-Montes, Ana, Crack, Peter, Crespo, Jose, Criollo, Alfredo, Crippa, Valeria, Cristofani, Riccardo, Csizmadia, Tamas, Cuadrado, Antonio, Cui, Bing, Cui, Jun, Cui, Yixian, Cui, Yong, Culetto, Emmanuel, Cumino, Andrea, Cybulsky, Andrey, Czaja, Mark, Czuczwar, Stanislaw, D'Adamo, Stefania, D'Amelio, Marcello, D'Arcangelo, Daniela, D'Lugos, Andrew, D'Orazi, Gabriella, da Silva, James, Dafsari, Hormos Salimi, Dagda, Ruben, Dagdas, Yasin, Daglia, Maria, Dai, Xiaoxia, Dai, Yun, Dai, Yuyuan, Dal Col, Jessica, Dalhaimer, Paul, Dalla Valle, Luisa, Dallenga, Tobias, Dalmasso, Guillaume, Damme, Markus, Dando, Ilaria, Dantuma, Nico, Darling, April, Das, Hiranmoy, Dasarathy, Srinivasan, Dasari, Santosh, Dash, Srikanta, Daumke, Oliver, Dauphinee, Adrian, Davies, Jeffrey, Dávila, Valeria, Davis, Roger, Davis, Tanja, Dayalan Naidu, Sharadha, De Amicis, Francesca, De Bosscher, Karolien, De Felice, Francesca, De Franceschi, Lucia, De Leonibus, Chiara, de Mattos Barbosa, Mayara, De Meyer, Guido, De Milito, Angelo, De Nunzio, Cosimo, De Palma, Clara, De Santi, Mauro, De Virgilio, Claudio, De Zio, Daniela, Debnath, Jayanta, DeBosch, Brian, Decuypere, Jean-Paul, Deehan, Mark, Deflorian, Gianluca, DeGregori, James, Dehay, Benjamin, Del Rio, Gabriel, Delaney, Joe, Delbridge, Lea, Delorme-Axford, Elizabeth, Delpino, M Victoria, Demarchi, Francesca, Dembitz, Vilma, Demers, Nicholas, Deng, Hongbin, Deng, Zhiqiang, Dengjel, Joern, Dent, Paul, Denton, Donna, DePamphilis, Melvin, Der, Channing, Deretic, Vojo, Descoteaux, Albert, Devis, Laura, Devkota, Sushil, Devuyst, Olivier, Dewson, Grant, Dharmasivam, Mahendiran, Dhiman, Rohan, di Bernardo, Diego, Di Cristina, Manlio, Di Domenico, Fabio, Di Fazio, Pietro, Di Fonzo, Alessio, Di Guardo, Giovanni, Di Guglielmo, Gianni, Di Leo, Luca, Di Malta, Chiara, Di Nardo, Alessia, Di Rienzo, Martina, Di Sano, Federica, Diallinas, George, Diao, Jiajie, Diaz-Araya, Guillermo, Díaz-Laviada, Inés, Dickinson, Jared, Diederich, Marc, Dieudé, Mélanie, Dikic, Ivan, Ding, Shiping, Ding, Wen-Xing, Dini, Luciana, Dinić, Jelena, Dinic, Miroslav, Dinkova-Kostova, Albena, Dionne, Marc, Distler, Jörg, Diwan, Abhinav, Dixon, Ian, Djavaheri-Mergny, Mojgan, Dobrinski, Ina, Dobrovinskaya, Oxana, Dobrowolski, Radek, Dobson, Renwick, Đokić, Jelena, Dokmeci Emre, Serap, Donadelli, Massimo, Dong, Bo, Dong, Xiaonan, Dong, Zhiwu, Dorn Ii, Gerald, Dotsch, Volker, Dou, Huan, Dou, Juan, Dowaidar, Moataz, Dridi, Sami, Drucker, Liat, Du, Ailian, Du, Caigan, Du, Guangwei, Du, Hai-Ning, Du, Li-Lin, du Toit, André, Duan, Shao-Bin, Duan, Xiaoqiong, Duarte, Sónia, Dubrovska, Anna, Dunlop, Elaine, Dupont, Nicolas, Durán, Raúl, Dwarakanath, Bilikere, Dyshlovoy, Sergey, Ebrahimi-Fakhari, Darius, Eckhart, Leopold, Edelstein, Charles, Efferth, Thomas, Eftekharpour, Eftekhar, Eichinger, Ludwig, Eid, Nabil, Eisenberg, Tobias, Eissa, N Tony, Eissa, Sanaa, Ejarque, Miriam, El Andaloussi, Abdeljabar, El-Hage, Nazira, El-Naggar, Shahenda, Eleuteri, Anna Maria, El-Shafey, Eman, Elgendy, Mohamed, Eliopoulos, Aristides, Elizalde, María, Elks, Philip, Elsasser, Hans-Peter, Elsherbiny, Eslam, Emerling, Brooke, Emre, N., Eng, Christina, Engedal, Nikolai, Engelbrecht, Anna-Mart, Engelsen, Agnete, Enserink, Jorrit, Escalante, Ricardo, Esclatine, Audrey, Escobar-Henriques, Mafalda, Eskelinen, Eeva-Liisa, Espert, Lucile, Eusebio, Makandjou-Ola, Fabrias, Gemma, Fabrizi, Cinzia, Facchiano, Antonio, Facchiano, Francesco, Fadeel, Bengt, Fader, Claudio, Faesen, Alex, Fairlie, W Douglas, Falcó, Alberto, Falkenburger, Bjorn, Fan, Daping, Fan, Jie, Fan, Yanbo, Fang, Evandro, Fang, Yanshan, Fang, Yognqi, Fanto, Manolis, Farfel-Becker, Tamar, Faure, Mathias, Fazeli, Gholamreza, Fedele, Anthony, Feldman, Arthur, Feng, Du, Feng, Jiachun, Feng, Lifeng, Feng, Yibin, Feng, Yuchen, Feng, Wei, Fenz Araujo, Thais, Ferguson, Thomas, Fernández, Álvaro, Fernandez-Checa, Jose, Fernández-Veledo, Sonia, Fernie, Alisdair, Ferrante, Anthony, Ferraresi, Alessandra, Ferrari, Merari, Ferreira, Julio, Ferro-Novick, Susan, Figueras, Antonio, Filadi, Riccardo, Filigheddu, Nicoletta, Filippi-Chiela, Eduardo, Filomeni, Giuseppe, Fimia, Gian Maria, Fineschi, Vittorio, Finetti, Francesca, Finkbeiner, Steven, Fisher, Edward, Fisher, Paul, Flamigni, Flavio, Fliesler, Steven, Flo, Trude, Florance, Ida, Florey, Oliver, Florio, Tullio, Fodor, Erika, Follo, Carlo, Fon, Edward, Forlino, Antonella, Fornai, Francesco, Fortini, Paola, Fracassi, Anna, Fraldi, Alessandro, Franco, Brunella, Franco, Rodrigo, Franconi, Flavia, Frankel, Lisa, Friedman, Scott, Fröhlich, Leopold, Frühbeck, Gema, Fuentes, Jose, Fujiki, Yukio, Fujita, Naonobu, Fujiwara, Yuuki, Fukuda, Mitsunori, Fulda, Simone, Furic, Luc, Furuya, Norihiko, Fusco, Carmela, Gack, Michaela, Gaffke, Lidia, Galadari, Sehamuddin, Galasso, Alessia, Galindo, Maria, Gallolu Kankanamalage, Sachith, Galluzzi, Lorenzo, Galy, Vincent, Gammoh, Noor, Gan, Boyi, Ganley, Ian, Gao, Feng, Gao, Hui, Gao, Minghui, Gao, Ping, Gao, Shou-Jiang, Gao, Wentao, Gao, Xiaobo, Garcera, Ana, Garcia, Maria Noé, Garcia, Verónica, García-del Portillo, Francisco, Garcia-Escudero, Vega, Garcia-Garcia, Aracely, Garcia-Macia, Marina, García-Moreno, Diana, Garcia-Ruiz, Carmen, García-Sanz, Patricia, Garg, Abhishek, Gargini, Ricardo, Garofalo, Tina, Garry, Robert, Gassen, Nils, Gatica, Damian, Ge, Liang, Ge, Wanzhong, Geiss-Friedlander, Ruth, Gelfi, Cecilia, Genschik, Pascal, Gentle, Ian, Gerbino, Valeria, Gerhardt, Christoph, Germain, Kyla, Germain, Marc, Gewirtz, David, Ghasemipour Afshar, Elham, Ghavami, Saeid, Ghigo, Alessandra, Ghosh, Manosij, Giamas, Georgios, Giampietri, Claudia, Giatromanolaki, Alexandra, Gibson, Gary, Gibson, Spencer, Ginet, Vanessa, Giniger, Edward, Giorgi, Carlotta, Girao, Henrique, Girardin, Stephen, Giridharan, Mridhula, Giuliano, Sandy, Giulivi, Cecilia, Giuriato, Sylvie, Giustiniani, Julien, Gluschko, Alexander, Goder, Veit, Goginashvili, Alexander, Golab, Jakub, Goldstone, David, Golebiewska, Anna, Gomes, Luciana, Gomez, Rodrigo, Gómez-Sánchez, Rubén, Gomez-Puerto, Maria Catalina, Gomez-Sintes, Raquel, Gong, Qingqiu, Goni, Felix, González-Gallego, Javier, Gonzalez-Hernandez, Tomas, Gonzalez-Polo, Rosa, Gonzalez-Reyes, Jose, González-Rodríguez, Patricia, Goping, Ing Swie, Gorbatyuk, Marina, Gorbunov, Nikolai, Görgülü, Kıvanç, Gorojod, Roxana, Gorski, Sharon, Goruppi, Sandro, Gotor, Cecilia, Gottlieb, Roberta, Gozes, Illana, Gozuacik, Devrim, Graef, Martin, Gräler, Markus, Granatiero, Veronica, Grasso, Daniel, Gray, Joshua, Green, Douglas, Greenhough, Alexander, Gregory, Stephen, Griffin, Edward, Grinstaff, Mark, Gros, Frederic, Grose, Charles, Gross, Angelina, Gruber, Florian, Grumati, Paolo, Grune, Tilman, Gu, Xueyan, Guan, Jun-Lin, Guardia, Carlos, Guda, Kishore, Guerra, Flora, Guerri, Consuelo, Guha, Prasun, Guillén, Carlos, Gujar, Shashi, Gukovskaya, Anna, Gukovsky, Ilya, Gunst, Jan, Günther, Andreas, Guntur, Anyonya, Guo, Chuanyong, Guo, Chun, Guo, Hongqing, Guo, Lian-Wang, Guo, Ming, Gupta, Pawan, Gupta, Shashi Kumar, Gupta, Swapnil, Gupta, Veer Bala, Gupta, Vivek, Gustafsson, Asa, Gutterman, David, H B, Ranjitha, Haapasalo, Annakaisa, Haber, James, Hać, Aleksandra, Hadano, Shinji, Hafrén, Anders, Haidar, Mansour, Hall, Belinda, Halldén, Gunnel, Hamacher-Brady, Anne, Hamann, Andrea, Hamasaki, Maho, Han, Weidong, Hansen, Malene, Hanson, Phyllis, Hao, Zijian, Harada, Masaru, Harhaji-Trajkovic, Ljubica, Hariharan, Nirmala, Haroon, Nigil, Harris, James, Hasegawa, Takafumi, Hasima Nagoor, Noor, Haspel, Jeffrey, Haucke, Volker, Hawkins, Wayne, Hay, Bruce, Haynes, Cole, Hayrabedyan, Soren, Hays, Thomas, He, Congcong, He, Qin, He, Rong-Rong, He, You-Wen, He, Yu-Ying, Heakal, Yasser, Heberle, Alexander, Hejtmancik, J Fielding, Helgason, Gudmundur Vignir, Henkel, Vanessa, Herb, Marc, Hergovich, Alexander, Herman-Antosiewicz, Anna, Hernández, Agustín, Hernandez, Carlos, Hernandez-Diaz, Sergio, Hernandez-Gea, Virginia, Herpin, Amaury, Herreros, Judit, Hervás, Javier, Hesselson, Daniel, Hetz, Claudio, Heussler, Volker, Higuchi, Yujiro, Hilfiker, Sabine, Hill, Joseph, Hlavacek, William, Ho, Emmanuel, Ho, Idy, Ho, Philip Wing-Lok, Ho, Shu-Leong, Ho, Wan Yun, Hobbs, G Aaron, Hochstrasser, Mark, Hoet, Peter, Hofius, Daniel, Hofman, Paul, Höhn, Annika, Holmberg, Carina, Hombrebueno, Jose, Yi-Ren Hong, Chang-Won Hong, Hooper, Lora, Hoppe, Thorsten, Horos, Rastislav, Hoshida, Yujin, Hsin, I-Lun, Hsu, Hsin-Yun, Hu, Bing, Hu, Dong, Hu, Li-Fang, Hu, Ming Chang, Hu, Ronggui, Hu, Wei, Hu, Yu-Chen, Hu, Zhuo-Wei, Hua, Fang, Hua, Jinlian, Hua, Yingqi, Huan, Chongmin, Huang, Canhua, Huang, Chuanshu, Huang, Chuanxin, Huang, Chunling, Huang, Haishan, Huang, Kun, Huang, Michael, Huang, Rui, Huang, Shan, Huang, Tianzhi, Huang, Xing, Huang, Yuxiang Jack, Huber, Tobias, Hubert, Virginie, Hubner, Christian, Hughes, Stephanie, Hughes, William, Humbert, Magali, Hummer, Gerhard, Hurley, James, Hussain, Sabah, Hussain, Salik, Hussey, Patrick, Hutabarat, Martina, Hwang, Hui-Yun, Hwang, Seungmin, Ieni, Antonio, Ikeda, Fumiyo, Imagawa, Yusuke, Imai, Yuzuru, Imbriano, Carol, Imoto, Masaya, Inman, Denise, Inoki, Ken, Iovanna, Juan, Iozzo, Renato, Ippolito, Giuseppe, Irazoqui, Javier, Iribarren, Pablo, Ishaq, Mohd, ISHIKAWA, Makoto, Ishimwe, Nestor, Isidoro, Ciro, Ismail, Nahed, Issazadeh-Navikas, Shohreh, Itakura, Eisuke, Ito, Daisuke, Ivankovic, Davor, Ivanova, Saška, Iyer, Anand Krishnan V, Izquierdo, José, Izumi, Masanori, Jäättelä, Marja, Jabir, Majid Sakhi, Jackson, William, Jacobo-Herrera, Nadia, Jacomin, Anne-Claire, Jacquin, Elise, Jadiya, Pooja, Jaeschke, Hartmut, Jagannath, Chinnaswamy, Jakobi, Arjen, Jakobsson, Johan, Janji, Bassam, Jansen-Dürr, Pidder, Jansson, Patric, Jantsch, Jonathan, Januszewski, Sławomir, Jassey, Alagie, Jean, Steve, Jeltsch-David, Hélène, Jendelova, Pavla, Jenny, Andreas, Jensen, Thomas, Jessen, Niels, Jewell, Jenna, Ji, Jing, Jia, Lijun, Jia, Rui, Jiang, Liwen, Jiang, Qing, Jiang, Richeng, Jiang, Teng, Jiang, Xuejun, Jiang, Yu, Jimenez-Sanchez, Maria, Jin, Eun-Jung, Jin, Fengyan, Jin, Hongchuan, Jin, Li, Jin, Luqi, Jin, Meiyan, Jin, Si, Jo, Eun-Kyeong, Joffre, Carine, Johansen, Terje, Johnson, Gail, Johnston, Simon, Jokitalo, Eija, Jolly, Mohit Kumar, Joosten, Leo, Jordan, Joaquin, Joseph, Bertrand, Ju, Dianwen, Ju, Jeong-Sun, Ju, Jingfang, Juárez, Esmeralda, Judith, Delphine, Juhász, Gábor, Jun, Youngsoo, Jung, Chang Hwa, Jung, Sung-Chul, Jung, Yong Keun, Jungbluth, Heinz, Jungverdorben, Johannes, Just, Steffen, Kaarniranta, Kai, Kaasik, Allen, Kabuta, Tomohiro, Kaganovich, Daniel, Kahana, Alon, Kain, Renate, Kajimura, Shinjo, Kalamvoki, Maria, Kalia, Manjula, Kalinowski, Danuta, Kaludercic, Nina, Kalvari, Ioanna, Kaminska, Joanna, Kaminskyy, Vitaliy, Kanamori, Hiromitsu, Kanasaki, Keizo, Kang, Chanhee, Kang, Rui, Kang, Sang Sun, Kaniyappan, Senthilvelrajan, Kanki, Tomotake, Kanneganti, Thirumala-Devi, Kanthasamy, Anumantha, Kanthasamy, Arthi, Kantorow, Marc, Kapuy, Orsolya, Karamouzis, Michalis, Karim, Md Razaul, Karmakar, Parimal, Katare, Rajesh, Kato, Masaru, Kaufmann, Stefan, Kauppinen, Anu, Kaushal, Gur, Kaushik, Susmita, Kawasaki, Kiyoshi, Kazan, Kemal, Ke, Po-Yuan, Keating, Damien, Keber, Ursula, Kehrl, John, Keller, Kate, Keller, Christian, Kemper, Jongsook Kim, Kenific, Candia, Kepp, Oliver, Kermorgant, Stephanie, Kern, Andreas, Ketteler, Robin, Keulers, Tom, Khalfin, Boris, Khalil, Hany, Khambu, Bilon, Khan, Shahid, Khandelwal, Vinoth Kumar Megraj, Khandia, Rekha, Kho, Widuri, Khobrekar, Noopur, Khuansuwan, Sataree, Khundadze, Mukhran, Killackey, Samuel, Kim, Dasol, Kim, Deok Ryong, Kim, Do-Hyung, Kim, Dong-Eun, Kim, Eun Young, Kim, Eun-Kyoung, Kim, Hak-Rim, Kim, Hee-Sik, Kim, Hyung Ryong, Kim, Jeong Hun, Kim, Jin Kyung, Kim, Jin-Hoi, Kim, Joungmok, Kim, Ju Hwan, Kim, Keun Il, Kim, Peter, Kim, Seong-Jun, Kimball, Scot, Kimchi, Adi, Kimmelman, Alec, Kimura, Tomonori, King, Matthew, Kinghorn, Kerri, Kinsey, Conan, Kirkin, Vladimir, Kirshenbaum, Lorrie, Kiselev, Sergey, Kishi, Shuji, Kitamoto, Katsuhiko, Kitaoka, Yasushi, Kitazato, Kaio, Kitsis, Richard, Kittler, Josef, Kjaerulff, Ole, Klein, Peter, Klopstock, Thomas, Klucken, Jochen, Knævelsrud, Helene, Knorr, Roland, Ko, Ben, Ko, Fred, Ko, Jiunn-Liang, Kobayashi, Hotaka, Kobayashi, Satoru, Koch, Ina, Koch, Jan, Koenig, Ulrich, Kögel, Donat, Koh, Young Ho, Koike, Masato, Kohlwein, Sepp, Kocaturk, Nur, Komatsu, Masaaki, König, Jeannette, Kono, Toru, Kopp, Benjamin, Korcsmaros, Tamas, Korkmaz, Gözde, Korolchuk, Viktor, Korsnes, Mónica Suárez, Koskela, Ali, Kota, Janaiah, Kotake, Yaichiro, Kotler, Monica, Kou, Yanjun, Koukourakis, Michael, Koustas, Evangelos, Kovacs, Attila, Kovács, Tibor, Koya, Daisuke, Kozako, Tomohiro, Kraft, Claudine, Krainc, Dimitri, Krämer, Helmut, Krasnodembskaya, Anna, Kretz-Remy, Carole, Kroemer, Guido, Ktistakis, Nicholas, Kuchitsu, Kazuyuki, Kuenen, Sabine, Kuerschner, Lars, Kukar, Thomas, Kumar, Ajay, Kumar, Ashok, Kumar, Deepak, Kumar, Dhiraj, Kumar, Sharad, Kume, Shinji, Kumsta, Caroline, Kundu, Chanakya, Kundu, Mondira, Kunnumakkara, Ajaikumar, Kurgan, Lukasz, Kutateladze, Tatiana, Kutlu, Ozlem, Kwak, SeongAe, Kwon, Ho Jeong, Kwon, Taeg Kyu, Kwon, Yong Tae, Kyrmizi, Irene, La Spada, Albert, Labonté, Patrick, Ladoire, Sylvain, Laface, Ilaria, Lafont, Frank, Lagace, Diane, Lahiri, Vikramjit, Lai, Zhibing, Laird, Angela, Lakkaraju, Aparna, Lamark, Trond, Lan, Sheng-Hui, Landajuela, Ane, Lane, Darius, Lane, Jon, Lang, Charles, Lange, Carsten, Langel, Ülo, Langer, Rupert, Lapaquette, Pierre, Laporte, Jocelyn, LaRusso, Nicholas, Lastres-Becker, Isabel, Lau, Wilson Chun Yu, Laurie, Gordon, Lavandero, Sergio, Law, Betty Yuen Kwan, Law, Helen Ka-wai, Layfield, Rob, Le, Weidong, Le Stunff, Herve, Leary, Alexandre, Lebrun, Jean-Jacques, Leck, Lionel, Leduc-Gaudet, Jean-Philippe, Lee, Changwook, Lee, Chung-Pei, Lee, Da-Hye, Lee, Edward, Lee, Erinna, Lee, Gyun Min, Lee, He-Jin, Lee, Heung Kyu, Lee, Jae Man, Lee, Jason, Lee, Jin-A, Lee, Joo-Yong, Lee, Jun Hee, Lee, Michael, Lee, Min Goo, Lee, Min Jae, Lee, Myung-Shik, Lee, Sang Yoon, Lee, Seung-Jae, Lee, Stella, Lee, Sung Bae, Lee, Won Hee, Lee, Ying-Ray, Lee, Yong-ho, Lee, Youngil, Lefebvre, Christophe, Legouis, Renaud, Lei, Yu, Lei, Yuchen, Leikin, Sergey, Leitinger, Gerd, Lemus, Leticia, Leng, Shuilong, Lenoir, Olivia, Lenz, Guido, Lenz, Heinz Josef, Lenzi, Paola, León, Yolanda, Leopoldino, Andréia, Leschczyk, Christoph, Leskelä, Stina, Letellier, Elisabeth, Leung, Chi-Ting, Leung, Po Sing, Leventhal, Jeremy, Levine, Beth, Lewis, Patrick, Ley, Klaus, Li, Bin, Li, Da-Qiang, Li, Jianming, Li, Jing, Li, Jiong, Li, Ke, Li, Liwu, Li, Mei, Li, Min, Li, Ming, Li, Mingchuan, Li, Pin-Lan, Li, Ming-Qing, Li, Qing, Li, Sheng, Li, Tiangang, Li, Wei, Li, Wenming, Li, Xue, Li, Yi-Ping, Li, Yuan, Li, Zhiqiang, Li, Zhiyong, Li, Zhiyuan, Lian, Jiqin, Liang, Chengyu, Liang, Qiangrong, Liang, Weicheng, Liang, Yongheng, Liang, YongTian, Liao, Guanghong, Liao, Lujian, Liao, Mingzhi, Liao, Yung-Feng, Librizzi, Mariangela, Lie, Pearl, Lilly, Mary, Lim, Hyunjung, Lima, Thania, Limana, Federica, Lin, Chao, Lin, Chih-Wen, Lin, Dar-Shong, Lin, Fu-Cheng, Lin, Jiandie, Lin, Kurt, Lin, Kwang-Huei, Lin, Liang-Tzung, LIN, Pei-Hui, Lin, Qiong, Lin, Shaofeng, Lin, Su-Ju, Lin, Wenyu, Lin, Xueying, Lin, Yao-Xin, Lin, Yee-Shin, Linden, Rafael, Lindner, Paula, Ling, Shuo-Chien, Lingor, Paul, Linnemann, Amelia, Liou, Yih-Cherng, Lipinski, Marta, Lipovšek, Saška, Lira, Vitor, Lisiak, Natalia, Liton, Paloma, Liu, Chao, Liu, Ching-Hsuan, Liu, Chun-Feng, Liu, Cui Hua, Liu, Fang, Liu, Hao, Liu, Hsiao-Sheng, Liu, Hua-feng, Liu, Huifang, Liu, Jia, Liu, Jing, Liu, Julia, Liu, Leyuan, Liu, Longhua, Liu, Meilian, Liu, Qin, Liu, Wei, Liu, Wende, Liu, Xiao-Hong, Liu, Xiaodong, Liu, Xingguo, Liu, Xu, Liu, Xuedong, Liu, Yanfen, Liu, Yang, Liu, Yueyang, Liu, Yule, Livingston, J Andrew, Lizard, Gerard, Lizcano, Jose, Ljubojevic-Holzer, Senka, LLeonart, Matilde, Llobet-Navàs, David, Llorente, Alicia, Lo, Chih Hung, Lobato-Márquez, Damián, Long, Qi, Long, Yun Chau, Loos, Ben, Loos, Julia, López, Manuela, López-Doménech, Guillermo, López-Guerrero, José Antonio, López-Jiménez, Ana, López-Pérez, Óscar, López-Valero, Israel, Lorenowicz, Magdalena, Lorente, Mar, Lorincz, Peter, Lossi, Laura, Lotersztajn, Sophie, Lovat, Penny, Lovell, Jonathan, Lovy, Alenka, Lőw, Péter, Lu, Guang, Lu, Haocheng, Lu, Jia-Hong, Lu, Jin-Jian, Lu, Mengji, Lu, Shuyan, Luciani, Alessandro, Lucocq, John, Ludovico, Paula, Luftig, Micah, Luhr, Morten, Luis-Ravelo, Diego, Lum, Julian, Luna-Dulcey, Liany, Lund, Anders, Lund, Viktor, Lünemann, Jan, Lüningschrör, Patrick, Luo, Honglin, Luo, Rongcan, Luo, Shouqing, Luo, Zhi, Luparello, Claudio, Lüscher, Bernhard, Luu, Luan, Lyakhovich, Alex, Lyamzaev, Konstantin, Lystad, Alf Håkon, Lytvynchuk, Lyubomyr, Ma, Alvin, Ma, Changle, Ma, Mengxiao, Ma, Ning-Fang, Ma, Quan-Hong, Ma, Xinliang, Ma, Yueyun, Ma, Zhenyi, MacDougald, Ormond, Macian, Fernando, MacIntosh, Gustavo, MacKeigan, Jeffrey, Macleod, Kay, Maday, Sandra, Madeo, Frank, Madesh, Muniswamy, Madl, Tobias, Madrigal-Matute, Julio, Maeda, Akiko, Maejima, Yasuhiro, Magarinos, Marta, Mahavadi, Poornima, Maiani, Emiliano, Maiese, Kenneth, Maiti, Panchanan, Maiuri, Maria Chiara, Majello, Barbara, Major, Michael, Makareeva, Elena, Malik, Fayaz, Mallilankaraman, Karthik, Malorni, Walter, Maloyan, Alina, Mammadova, Najiba, Man, Gene Chi Wai, Manai, Federico, Mancias, Joseph, Mandelkow, Eva-Maria, Mandell, Michael, Manfredi, Angelo, Manjili, Masoud, Manjithaya, Ravi, Manque, Patricio, Manshian, Bella, Manzano, Raquel, Manzoni, Claudia, Mao, Kai, Marchese, Cinzia, Marchetti, Sandrine, Marconi, Anna Maria, Marcucci, Fabrizio, Mardente, Stefania, Mareninova, Olga, Margeta, Marta, Mari, Muriel, Marinelli, Sara, Marinelli, Oliviero, Mariño, Guillermo, Mariotto, Sofia, Marshall, Richard, Marten, Mark, Martens, Sascha, Martin, Alexandre, Martin, Katie, Martin, Sara, Martin, Shaun, Martín-Segura, Adrián, Martín-Acebes, Miguel, Martin-Burriel, Inmaculada, Martin-Rincon, Marcos, Martin-Sanz, Paloma, Martina, José, Martinet, Wim, Martinez, Aitor, Martinez, Ana, Martinez, Jennifer, Martinez Velazquez, Moises, Martinez-Lopez, Nuria, Martinez-Vicente, Marta, Martins, Daniel, Martins, Joilson, Martins, Waleska, Martins-Marques, Tania, Marzetti, Emanuele, Masaldan, Shashank, Masclaux-Daubresse, Celine, Mashek, Douglas, Massa, Valentina, Massieu, Lourdes, Masson, Glenn, Masuelli, Laura, Masyuk, Anatoliy, Masyuk, Tetyana, Matarrese, Paola, Matheu, Ander, Matoba, Satoaki, Matsuzaki, Sachiko, Mattar, Pamela, Matte, Alessandro, Mattoscio, Domenico, Mauriz, José, Mauthe, Mario, Mauvezin, Caroline, Maverakis, Emanual, Maycotte, Paola, Mayer, Johanna, Mazzoccoli, Gianluigi, Mazzoni, Cristina, Mazzulli, Joseph, McCarty, Nami, Mcdonald, Christine, McGill, Mitchell, McKenna, Sharon, Mclaughlin, Bethann, McLoughlin, Fionn, McNiven, Mark, McWilliams, Thomas, Mechta-Grigoriou, Fatima, Medeiros, Tania Catarina, Medina, Diego, Megeney, Lynn, Megyeri, Klara, Mehrpour, Maryam, Mehta, Jawahar, Meijer, Alfred, Meijer, Annemarie, Mejlvang, Jakob, Meléndez, Alicia, Melk, Annette, Memisoglu, Gonen, Mendes, Alexandrina, Meng, Delong, Meng, Fei, Meng, Tian, Menna-Barreto, Rubem, Menon, Manoj, Mercer, Carol, Mercier, Anne, MERGNY, Jean-Louis, Merighi, Adalberto, Merkley, Seth, Merla, Giuseppe, Meske, Volker, Mestre, Ana Cecilia, Metur, Shree Padma, Meyer, Christian, Meyer, Hemmo, Mi, Wenyi, Mialet-Perez, Jeanne, Miao, Junying, Micale, Lucia, Miki, Yasuo, Milan, Enrico, Milczarek, Małgorzata, Miller, Dana, Miller, Samuel, Miller, Silke, Millward, Steven, Milosevic, Ira, Minina, Elena, Mirzaei, Hamed, Mirzaei, Hamid Reza, Mirzaei, Mehdi, Mishra, Amit, Mishra, Nandita, Mishra, Paras Kumar, Misirkic Marjanovic, Maja, Misasi, Roberta, Misra, Amit, Misso, Gabriella, Mitchell, Claire, Mitou, Geraldine, Miura, Tetsuji, Miyamoto, Shigeki, MIYAZAKI, Makoto, Miyazaki, Mitsunori, Miyazaki, Taiga, Miyazawa, Keisuke, Mizushima, Noboru, Mogensen, Trine, Mograbi, Baharia, Mohammadinejad, Reza, Mohamud, Yasir, Mohanty, Abhishek, Mohapatra, Sipra, Möhlmann, Torsten, Mohmmed, Asif, Moles, Anna, Moley, Kelle, Molinari, Maurizio, Mollace, Vincenzo, Møller, Andreas Buch, Mollereau, Bertrand, Mollinedo, Faustino, Montagna, Costanza, Monteiro, Mervyn, Montella, Andrea, Montes, L Ruth, Montico, Barbara, Mony, Vinod, Monzio Compagnoni, Giacomo, Moore, Michael, Moosavi, Mohammad, Mora, Ana, Mora, Marina, Morales-Alamo, David, Moratalla, Rosario, Moreira, Paula, Morelli, Elena, Moreno, Sandra, Moreno-Blas, Daniel, Moresi, Viviana, Morga, Benjamin, Morgan, Alwena, Morin, Fabrice, Morishita, Hideaki, Moritz, Orson, Moriyama, Mariko, Moriyasu, Yuji, Morleo, Manuela, Morselli, Eugenia, Moruno-Manchon, Jose, Moscat, Jorge, Mostowy, Serge, Motori, Elisa, Moura, Andrea Felinto, Moustaid-Moussa, Naima, Mrakovcic, Maria, Muciño-Hernández, Gabriel, Mukherjee, Anupam, Mukhopadhyay, Subhadip, Mulcahy Levy, Jean, Mulero, Victoriano, Muller, Sylviane, Münch, Christian, Munjal, Ashok, Munoz-Canoves, Pura, Muñoz-Galdeano, Teresa, Münz, Christian, Murakawa, Tomokazu, Muratori, Claudia, Murphy, Brona, Murphy, J Patrick, Murthy, Aditya, Myöhänen, Timo, Mysorekar, Indira, Mytych, Jennifer, Nabavi, Seyed Mohammad, Nabissi, Massimo, Nagy, Péter, Nah, Jihoon, Nahimana, Aimable, Nakagawa, Ichiro, Nakamura, Ken, Nakatogawa, Hitoshi, Nandi, Shyam, Nanjundan, Meera, Nanni, Monica, Napolitano, Gennaro, Nardacci, Roberta, Narita, Masashi, Nassif, Melissa, Nathan, Ilana, Natsumeda, Manabu, Naude, Ryno, Naumann, Christin, Naveiras, Olaia, Navid, Fatemeh, Nawrocki, Steffan, Nazarko, Taras, Nazio, Francesca, Negoita, Florentina, Neill, Thomas, Neisch, Amanda, Neri, Luca, Netea, Mihai, Neubert, Patrick, Neufeld, Thomas, Neumann, Dietbert, Neutzner, Albert, Newton, Phillip, Ney, Paul, Nezis, Ioannis, Ng, Charlene, Ng, Tzi Bun, Nguyen, Hang, Nguyen, Long, Ni, Hong-Min, Ní Cheallaigh, Clíona, Ni, Zhenhong, Nicolao, M Celeste, Nicoli, Francesco, Nieto-Diaz, Manuel, Nilsson, Per, Ning, Shunbin, Niranjan, Rituraj, Nishimune, Hiroshi, Niso-Santano, Mireia, Nixon, Ralph, Nobili, Annalisa, Nobrega, Clevio, Noda, Takeshi, Nogueira-Recalde, Uxía, Nolan, Trevor, Nombela, Ivan, Novak, Ivana, Novoa, Beatriz, Nozawa, Takashi, Nukina, Nobuyuki, Nussbaum-Krammer, Carmen, Nylandsted, Jesper, O'Donovan, Tracey, O'Leary, Seónadh, O'Rourke, Eyleen, O'Sullivan, Mary, O'Sullivan, Timothy, Oddo, Salvatore, Oehme, Ina, Ogawa, Michinaga, Ogier-Denis, Eric, Ogmundsdottir, Margret, Ogretmen, Besim, Oh, Goo Taeg, Oh, Seon-Hee, Oh, Young, Ohama, Takashi, Ohashi, Yohei, Ohmuraya, Masaki, Oikonomou, Vasileios, Ojha, Rani, Okamoto, Koji, Okazawa, Hitoshi, Oku, Masahide, Oliván, Sara, Oliveira, Jorge, Ollmann, Michael, Olzmann, James, Omari, Shakib, Omary, M Bishr, Önal, Gizem, Ondrej, Martin, Ong, Sang-Bing, Ong, Sang-Ging, Onnis, Anna, Orellana, Juan, Orellana-Muñoz, Sara, Ortega-Villaizan, Maria Del Mar, Ortiz-Gonzalez, Xilma, Ortona, Elena, Osiewacz, Heinz, Osman, Abdel-Hamid, Osta, Rosario, Otegui, Marisa, Otsu, Kinya, Ott, Christiane, Ottobrini, Luisa, Ou, Jing-Hsiung James, Outeiro, Tiago, Oynebraten, Inger, Ozturk, Melek, Pagès, Gilles, Pahari, Susanta, Pajares, Marta, Pajvani, Utpal, Pal, Rituraj, Paladino, Simona, Pallet, Nicolas, Palmieri, Michela, Palmisano, Giuseppe, Palumbo, Camilla, Pampaloni, Francesco, Pan, Lifeng, Pan, Qingjun, Pan, Wenliang, Pan, Xin, Panasyuk, Ganna, Pandey, Rahul, Pandey, Udai, Pandya, Vrajesh, Paneni, Francesco, Pang, Shirley, Panzarini, Elisa, Papademetrio, Daniela, Papaleo, Elena, Papinski, Daniel, Papp, Diana, Park, Eun Chan, Park, Hwan Tae, Park, Ji-Man, Park, Jong-In, Park, Joon Tae, Park, Junsoo, Park, Sang Chul, Park, Sang-Youel, Parola, Abraham, Parys, Jan, Pasquier, Adrien, Pasquier, Benoit, Passos, João, Pastore, Nunzia, Patel, Hemal, Patschan, Daniel, Pattingre, Sophie, Pedraza-Alva, Gustavo, Pedraza-Chaverri, Jose, Pedrozo, Zully, Pei, Gang, Pei, Jianming, Peled-Zehavi, Hadas, Pellegrini, Joaquín, Pelletier, Joffrey, Peñalva, Miguel, Peng, Di, Peng, Ying, Penna, Fabio, Pennuto, Maria, Pentimalli, Francesca, Pereira, Cláudia MF, Pereira, Gustavo, Pereira, Lilian, Pereira de Almeida, Luis, Perera, Nirma, Pérez-Lara, Ángel, Perez-Oliva, Ana, Pérez-Pérez, María Esther, Periyasamy, Palsamy, Perl, Andras, Perrotta, Cristiana, Perrotta, Ida, Pestell, Richard, Petersen, Morten, Petrache, Irina, Petrovski, Goran, Pfirrmann, Thorsten, Pfister, Astrid, Philips, Jennifer, Pi, Huifeng, Picca, Anna, Pickrell, Alicia, Picot, Sandy, Pierantoni, Giovanna, Pierdominici, Marina, Pierre, Philippe, Pierrefite-Carle, Valérie, Pierzynowska, Karolina, Pietrocola, Federico, Pietruczuk, Miroslawa, Pignata, Claudio, Pimentel-Muiños, Felipe, Pinar, Mario, Pinheiro, Roberta, Pinkas-Kramarski, Ronit, Pinton, Paolo, Pircs, Karolina, Piya, Sujan, Pizzo, Paola, Plantinga, Theo, Platta, Harald, Plaza-Zabala, Ainhoa, Plomann, Markus, Plotnikov, Egor, Plun-Favreau, Helene, Pluta, Ryszard, Pocock, Roger, Pöggeler, Stefanie, Pohl, Christian, Poirot, Marc, Poletti, Angelo, Ponpuak, Marisa, Popelka, Hana, Popova, Blagovesta, Porta, Helena, Porte Alcon, Soledad, Portilla-Fernandez, Eliana, Post, Martin, Potts, Malia, Poulton, Joanna, Powers, Ted, Prahlad, Veena, Prajsnar, Tomasz, Praticò, Domenico, Prencipe, Rosaria, Priault, Muriel, Proikas-Cezanne, Tassula, Promponas, Vasilis, Proud, Christopher, Puertollano, Rosa, Puglielli, Luigi, Pulinilkunnil, Thomas, Puri, Deepika, Puri, Rajat, Puyal, Julien, Qi, Xiaopeng, Qi, Yongmei, Qian, Wenbin, Qiang, Lei, Qiu, Yu, Quadrilatero, Joe, Quarleri, Jorge, Raben, Nina, Rabinowich, Hannah, Ragona, Debora, Ragusa, Michael, Rahimi, Nader, Rahmati, Marveh, Raia, Valeria, Raimundo, Nuno, Rajasekaran, Namakkal-Soorappan, Ramachandra Rao, Sriganesh, Rami, Abdelhaq, Ramírez-Pardo, Ignacio, Ramsden, David, Randow, Felix, Rangarajan, Pundi, Ranieri, Danilo, Rao, Hai, Rao, Lang, Rao, Rekha, Rathore, Sumit, Ratnayaka, J Arjuna, Ratovitski, Edward, Ravanan, Palaniyandi, Ravegnini, Gloria, Ray, Swapan, Razani, Babak, Rebecca, Vito, Reggiori, Fulvio, Régnier-Vigouroux, Anne, Reichert, Andreas, Reigada, David, Reiling, Jan, Rein, Theo, Reipert, Siegfried, Rekha, Rokeya Sultana, Ren, Hongmei, Ren, Jun, Ren, Weichao, Renault, Tristan, Renga, Giorgia, Reue, Karen, Rewitz, Kim, Ribeiro de Andrade Ramos, Bruna, Riazuddin, S Amer, Ribeiro-Rodrigues, Teresa, Ricci, Jean-Ehrland, Ricci, Romeo, Riccio, Victoria, Richardson, Des, Rikihisa, Yasuko, Risbud, Makarand, Risueño, Ruth, Ritis, Konstantinos, Rizza, Salvatore, Rizzuto, Rosario, Roberts, Helen, Roberts, Luke, Robinson, Katherine, Roccheri, Maria Carmela, Rocchi, Stephane, Rodney, George, Rodrigues, Tiago, Rodrigues Silva, Vagner Ramon, Rodriguez, Amaia, Rodriguez-Barrueco, Ruth, Rodriguez-Henche, Nieves, Rodriguez-Rocha, Humberto, Roelofs, Jeroen, Rogers, Robert, Rogov, Vladimir, ROJO, Ana, Rolka, Krzysztof, Romanello, Vanina, Romani, Luigina, Romano, Alessandra, Romano, Patricia, Romeo-Guitart, David, Romero, Luis, Romero, Montserrat, Roney, Joseph, Rongo, Christopher, Roperto, Sante, Rosenfeldt, Mathias, Rosenstiel, Philip, Rosenwald, Anne, Roth, Kevin, Roth, Lynn, Roth, Steven, Rouschop, Kasper, Roussel, Benoit, Roux, Sophie, Rovere-Querini, Patrizia, Roy, Ajit, Rozieres, Aurore, Ruano, Diego, Rubinsztein, David, Rubtsova, Maria, Ruckdeschel, Klaus, Ruckenstuhl, Christoph, Rudolf, Emil, Rudolf, Rüdiger, Ruggieri, Alessandra, Ruparelia, Avnika Ashok, Rusmini, Paola, Russell, Ryan, Russo, Gian Luigi, Russo, Maria, Russo, Rossella, Ryabaya, Oxana, Ryan, Kevin, Ryu, Kwon-Yul, Sabater-Arcis, Maria, Sachdev, Ulka, Sacher, Michael, Sachse, Carsten, Sadhu, Abhishek, Sadoshima, Junichi, Safren, Nathaniel, Saftig, Paul, Sagona, Antonia, Sahay, Gaurav, Sahebkar, Amirhossein, Sahin, Mustafa, Sahin, Ozgur, Sahni, Sumit, Saito, Nayuta, Saito, Shigeru, Saito, Tsunenori, Sakai, Ryohei, Sakai, Yasuyoshi, Sakamaki, Jun-Ichi, Saksela, Kalle, Salazar, Gloria, Salazar-Degracia, Anna, Salekdeh, Ghasem, Saluja, Ashok, Sampaio-Marques, Belém, Sanchez, Maria Cecilia, Sanchez-Alcazar, Jose, Sanchez-Vera, Victoria, Sancho-Shimizu, Vanessa, Sanderson, J Thomas, Sandri, Marco, Santaguida, Stefano, Santambrogio, Laura, Santana, Magda, Santoni, Giorgio, Sanz, Alberto, Sanz, Pascual, Saran, Shweta, Sardiello, Marco, Sargeant, Timothy, Sarin, Apurva, Sarkar, Chinmoy, Sarkar, Sovan, Sarrias, Maria-Rosa, Sarkar, Surajit, Sarmah, Dipanka Tanu, Sarparanta, Jaakko, Sathyanarayan, Aishwarya, Sathyanarayanan, Ranganayaki, Scaglione, K Matthew, Scatozza, Francesca, Schaefer, Liliana, Schafer, Zachary, Schaible, Ulrich, Schapira, Anthony, Scharl, Michael, Schatzl, Hermann, Schein, Catherine, Scheper, Wiep, Scheuring, David, Schiaffino, Maria Vittoria, Schiappacassi, Monica, Schindl, Rainer, Schlattner, Uwe, Schmidt, Oliver, Schmitt, Roland, Schmidt, Stephen, Schmitz, Ingo, Schmukler, Eran, Schneider, Anja, Schneider, Bianca, Schober, Romana, Schoijet, Alejandra, Schott, Micah, Schramm, Michael, Schröder, Bernd, Schuh, Kai, Schüller, Christoph, Schulze, Ryan, Schürmanns, Lea, Schwamborn, Jens, Schwarten, Melanie, Scialo, Filippo, Sciarretta, Sebastiano, Scott, Melanie, Scotto, Kathleen, Scovassi, A Ivana, Scrima, Andrea, Scrivo, Aurora, Sebastian, David, Sebti, Salwa, Sedej, Simon, Segatori, Laura, Segev, Nava, Seglen, Per, Seiliez, Iban, Seki, Ekihiro, Selleck, Scott, Sellke, Frank, Selsby, Joshua, Sendtner, Michael, Senturk, Serif, Seranova, Elena, Sergi, Consolato, Serra-Moreno, Ruth, Sesaki, Hiromi, Settembre, Carmine, Setty, Subba Rao Gangi, Sgarbi, Gianluca, Sha, Ou, Shacka, John, Shah, Javeed, Shang, Dantong, Shao, Changshun, Shao, Feng, Sharbati, Soroush, Sharkey, Lisa, Sharma, Dipali, Sharma, Gaurav, Sharma, Kulbhushan, Sharma, Pawan, Sharma, Surendra, Shen, Han-Ming, Shen, Hongtao, Shen, Jiangang, Shen, Ming, Shen, Weili, Shen, Zheni, Sheng, Rui, Sheng, Zhi, Sheng, Zu-Hang, Shi, Jianjian, Shi, Xiaobing, Shi, Ying-Hong, Shiba-Fukushima, Kahori, Shieh, Jeng-Jer, Shimada, Yohta, Shimizu, Shigeomi, Shimozawa, Makoto, Shintani, Takahiro, Shoemaker, Christopher, Shojaei, Shahla, Shoji, Ikuo, Shravage, Bhupendra, Shridhar, Viji, Shu, Chih-Wen, Shu, Hong-Bing, Shui, Ke, Shukla, Arvind, Shutt, Timothy, Sica, Valentina, Siddiqui, Aleem, Sierra, Amanda, Sierra-Torre, Virginia, Signorelli, Santiago, Sil, Payel, Silva, Bruno, Silva, Johnatas, Silva-Pavez, Eduardo, Silvente-Poirot, Sandrine, Simmonds, Rachel, Simon, Anna Katharina, Simon, Hans-Uwe, Simons, Matias, Singh, Anurag, Singh, Lalit, Singh, Rajat, Singh, Shivendra, Singh, Shrawan, Singh, Sudha, Singh, Sunaina, Singh, Surinder Pal, Sinha, Debasish, Sinha, Rohit Anthony, Sinha, Sangita, Sirko, Agnieszka, Sirohi, Kapil, Sivridis, Efthimios, Skendros, Panagiotis, Skirycz, Aleksandra, Slaninová, Iva, Smaili, Soraya, Smertenko, Andrei, Smith, Matthew, Soenen, Stefaan, Sohn, Eun Jung, Sok, Sophia, Solaini, Giancarlo, Soldati, Thierry, Soleimanpour, Scott, Soler, Rosa, Solovchenko, Alexei, Somarelli, Jason, Sonawane, Avinash, Song, Fuyong, Song, Hyun Kyu, Song, Ju-Xian, Song, Kunhua, Song, Zhiyin, Soria, Leandro, Sorice, Maurizio, Soukas, Alexander, Soukup, Sandra-Fausia, Sousa, Diana, Sousa, Nadia, Spagnuolo, Paul, Spector, Stephen, Srinivas Bharath, M., St Clair, Daret, Stagni, Venturina, Staiano, Leopoldo, Stalnecker, Clint, Stankov, Metodi, Stathopulos, Peter, Stefan, Katja, Stefan, Sven Marcel, Stefanis, Leonidas, Steffan, Joan, Steinkasserer, Alexander, Stenmark, Harald, Sterneckert, Jared, Stevens, Craig, Stoka, Veronika, Storch, Stephan, Stork, Björn, Strappazzon, Flavie, Strohecker, Anne Marie, Stupack, Dwayne, Su, Huanxing, Su, Ling-Yan, Su, Longxiang, Suarez-Fontes, Ana, Subauste, Carlos, Subbian, Selvakumar, Subirada, Paula, Sudhandiran, Ganapasam, Sue, Carolyn, Sui, Xinbing, Summers, Corey, Sun, Guangchao, Sun, Jun, SUN, Kang, Sun, Meng-xiang, Sun, Qiming, Sun, Yi, Sun, Zhongjie, Sunahara, Karen, Sundberg, Eva, Susztak, Katalin, Sutovsky, Peter, Suzuki, Hidekazu, Sweeney, Gary, Symons, J David, Sze, Stephen Cho Wing, Szewczyk, Nathaniel, Tabęcka-Łonczynska, Anna, Tabolacci, Claudio, Tacke, Frank, Taegtmeyer, Heinrich, Tafani, Marco, Tagaya, Mitsuo, Tai, Haoran, Tait, Stephen, Takahashi, Yoshinori, Takats, Szabolcs, Talwar, Priti, Tam, Chit, Tam, Shing Yau, Tampellini, Davide, Tamura, Atsushi, Tan, Chong Teik, Tan, Eng-King, Tan, Ya-Qin, Tanaka, Masaki, Tanaka, Motomasa, Tang, Daolin, Tang, Jingfeng, Tang, Tie-Shan, Tanida, Isei, Tao, Zhipeng, Taouis, Mohammed, Tatenhorst, Lars, Tavernarakis, Nektarios, Taylor, Allen, Taylor, Gregory, Taylor, Joan, Tchetina, Elena, Tee, Andrew, Tegeder, Irmgard, Teis, David, Teixeira, Natercia, Teixeira-Clerc, Fatima, Tekirdag, Kumsal, Tencomnao, Tewin, Tenreiro, Sandra, Tepikin, Alexei, Testillano, Pilar, Tettamanti, Gianluca, Tharaux, Pierre-Louis, Thedieck, Kathrin, Thekkinghat, Arvind, Thellung, Stefano, Thinwa, Josephine, Thirumalaikumar, V.P., Thomas, Sufi Mary, Thomes, Paul, Thorburn, Andrew, Thukral, Lipi, Thum, Thomas, Thumm, Michael, Tian, Ling, Tichy, Ales, Till, Andreas, Timmerman, Vincent, Titorenko, Vladimir, Todi, Sokol, Todorova, Krassimira, Toivonen, Janne, Tomaipitinca, Luana, Tomar, Dhanendra, Tomas-Zapico, Cristina, Tomić, Sergej, Tong, Benjamin Chun-Kit, Tong, Chao, Tong, Xin, Tooze, Sharon, Torgersen, Maria, Torii, Satoru, Torres-López, Liliana, Torriglia, Alicia, Towers, Christina, Towns, Roberto, Toyokuni, Shinya, Trajkovic, Vladimir, Tramontano, Donatella, Tran, Quynh-Giao, Travassos, Leonardo, Trelford, Charles, Tremel, Shirley, Trougakos, Ioannis, Tsao, Betty, Tschan, Mario, Tse, Hung-Fat, Tse, Tak Fu, Tsugawa, Hitoshi, Tsvetkov, Andrey, Tumbarello, David, Tumtas, Yasin, Tuñón, María, Turcotte, Sandra, Turk, Boris, Turk, Vito, Turner, Bradley, Tuxworth, Richard, Tyler, Jessica, Tyutereva, Elena, Uchiyama, Yasuo, Ugun-Klusek, Aslihan, Uhlig, Holm, Ułamek-Kozioł, Marzena, Ulasov, Ilya, Umekawa, Midori, Ungermann, Christian, Unno, Rei, Urbe, Sylvie, Uribe-Carretero, Elisabet, Üstün, Suayib, Uversky, Vladimir, Vaccari, Thomas, Vaccaro, Maria, Vahsen, Björn, Vakifahmetoglu-Norberg, Helin, Valdor, Rut, Valente, Maria, Valko, Ayelén, Vallee, Richard, Valverde, Angela, Van Den Berghe, Greet, van der Veen, Stijn, Van Kaer, Luc, van Loosdregt, Jorg, van Wijk, Sjoerd, Vandenberghe, Wim, Vanhorebeek, Ilse, Vannier-Santos, Marcos, Vannini, Nicola, Vanrell, M Cristina, Vantaggiato, Chiara, Varano, Gabriele, Varela-Nieto, Isabel, Varga, Máté, Vasconcelos, M Helena, Vats, Somya, Vavvas, Demetrios, Vega-Naredo, Ignacio, Vega-Rubin-de-Celis, Silvia, Velasco, Guillermo, Velázquez, Ariadna, Vellai, Tibor, Vellenga, Edo, Velotti, Francesca, Verdier, Mireille, Verginis, Panayotis, Vergne, Isabelle, Verkade, Paul, Verma, Manish, Verstreken, Patrik, Vervliet, Tim, Vervoorts, Jörg, Vessoni, Alexandre, Victor, Victor, Vidal, Michel, Vidoni, Chiara, Vieira, Otilia, Vierstra, Richard, Viganó, Sonia, Vihinen, Helena, Vijayan, Vinoy, Vila, Miquel, Vilar, Marçal, Villalba, José, Villalobo, Antonio, Villarejo-Zori, Beatriz, Villarroya, Francesc, Villarroya, Joan, Vincent, Olivier, Vindis, Cecile, Viret, Christophe, Viscomi, Maria Teresa, Visnjic, Dora, Vitale, Ilio, Vocadlo, David, Voitsekhovskaja, Olga, Volonté, Cinzia, Volta, Mattia, Vomero, Marta, Von Haefen, Clarissa, Vooijs, Marc, Voos, Wolfgang, Vucicevic, Ljubica, Wade-Martins, Richard, Waguri, Satoshi, Waite, Kenrick, Wakatsuki, Shuji, Walker, David, Walker, Mark, Walker, Simon, Walter, Jochen, Wandosell, Francisco, Wang, Bo, Wang, Chao-Yung, Wang, Chen, Wang, Chenran, Wang, Chenwei, Wang, Cun-Yu, Wang, Dong, Wang, Fangyang, Wang, Feng, Wang, Fengming, Wang, Guansong, Wang, Han, Wang, Hao, Wang, Hexiang, Wang, Hong-Gang, Wang, Jianrong, Wang, Jigang, Wang, Jiou, Wang, Jundong, Wang, Kui, Wang, Lianrong, Wang, Liming, Wang, Maggie Haitian, Wang, Meiqing, Wang, Nanbu, Wang, PengWei, Wang, PeiPei, Wang, Ping, Wang, Qing Jun, Wang, Qing, Wang, Qing Kenneth, Wang, Qiong, Wang, Wen-Tao, Wang, Wuyang, Wang, Xinnan, Wang, Xuejun, Wang, Yan, Wang, Yanchang, Wang, Yanzhuang, Wang, Yen-Yun, Wang, Yihua, Wang, Yipeng, Wang, Yu, wang, yuqi, Wang, Zhe, Wang, Zhenyu, Wang, Zhouguang, Warnes, Gary, Warnsmann, Verena, Watada, Hirotaka, Watanabe, Eizo, Watchon, Maxinne, Wawrzyńska, Anna, Weaver, Timothy, Wegrzyn, Grzegorz, Wehman, Ann, Wei, Huafeng, Wei, Lei, Wei, Taotao, Wei, Yongjie, Weiergräber, Oliver, Weihl, Conrad, Weindl, Günther, Weiskirchen, Ralf, Wells, Alan, Wen, Runxia, Wen, Xin, Werner, Antonia, Weykopf, Beatrice, Wheatley, Sally, Whitton, J Lindsay, Whitworth, Alexander, Wiktorska, Katarzyna, Wildenberg, Manon, Wileman, Tom, Wilkinson, Simon, Willbold, Dieter, Williams, Brett, Williams, Robin, Williams, Roger, Williamson, Peter, Wilson, Richard, Winner, Beate, Winsor, Nathaniel, Witkin, Steven, Wodrich, Harald, Woehlbier, Ute, Wollert, Thomas, Wong, Esther, Wong, Jack Ho, Wong, Richard, Wong, Vincent Kam Wai, Wong, W Wei-Lynn, Wu, An-Guo, Wu, Chengbiao, Wu, Jian, Wu, Junfang, Wu, Kenneth, Wu, Min, Wu, Shan-Ying, Wu, Shengzhou, Wu, Shu-Yan, Wu, Shufang, Wu, William, Wu, Xiaohong, Wu, Xiaoqing, Wu, Yao-Wen, Wu, Yihua, Xavier, Ramnik, Xia, Hongguang, Xia, Lixin, Xia, Zhengyuan, Xiang, Ge, Xiang, Jin, Xiang, Mingliang, Xiang, Wei, Xiao, Bin, Xiao, Guozhi, Xiao, Hengyi, Xiao, Hong-tao, Xiao, Jian, Xiao, Lan, Xiao, Shi, Xiao, Yin, Xie, Baoming, Xie, Chuan-Ming, Xie, Min, Xie, Yuxiang, Xie, Zhiping, Xie, Zhonglin, Xilouri, Maria, Xu, Congfeng, Xu, En, Xu, Haoxing, Xu, Jing, Xu, Jinrong, Xu, Liang, Xu, Wen Wen, Xu, Xiulong, Xue, Yu, Yakhine-Diop, Sokhna, Yamaguchi, Masamitsu, Yamaguchi, Osamu, Yamamoto, Ai, Yamashina, Shunhei, Yan, Shengmin, Yan, Shian-Jang, Yan, Zhen, Yanagi, Yasuo, Yang, Chuanbin, Yang, Dun-Sheng, Yang, Huan, Yang, Huang-Tian, Yang, Hui, Yang, Jin-Ming, Yang, Jing, Yang, Jingyu, Yang, Ling, Yang, Liu, Yang, Ming, Yang, Pei-Ming, Yang, Qian, Yang, Seungwon, Yang, Shu, Yang, Shun-Fa, Yang, Wannian, Yang, Wei Yuan, Yang, Xiaoyong, Yang, Xuesong, Yang, Yi, Yang, Ying, Yao, Honghong, Yao, Shenggen, Yao, Xiaoqiang, Yao, Yong-Gang, Yao, Yong-Ming, Yasui, Takahiro, Yazdankhah, Meysam, Yen, Paul, Yi, Cong, Yin, Xiao-Ming, Yin, Yanhai, Yin, Zhangyuan, Yin, Ziyi, Ying, Meidan, Ying, Zheng, Yip, Calvin, Yiu, Stephanie Pei Tung, Yoo, Young, Yoshida, Kiyotsugu, Yoshii, Saori, Yoshimori, Tamotsu, Yousefi, Bahman, Yu, Boxuan, Yu, Haiyang, Yu, Jun, Yu, Li, Yu, Ming-Lung, Yu, Seong-Woon, Yu, Victor, Yu, W Haung, Yu, Zhengping, Yu, Zhou, Yuan, Junying, Yuan, Ling-Qing, Yuan, Shilin, Yuan, Shyng-Shiou, Yuan, Yanggang, Yuan, Zengqiang, Yue, Jianbo, Yue, Zhenyu, Yun, Jeanho, Yung, Raymond, Zacks, David, Zaffagnini, Gabriele, Zambelli, Vanessa, Zanella, Isabella, Zang, Qun, Zanivan, Sara, Zappavigna, Silvia, Zaragoza, Pilar, Zarbalis, Konstantinos, Zarebkohan, Amir, Zarrouk, Amira, Zeitlin, Scott, Zeng, Jialiu, Zeng, Ju-deng, Žerovnik, Eva, Zhan, Lixuan, Zhang, Bin, Zhang, Donna, Zhang, Hanlin, Zhang, Hong, Zhang, Honghe, Zhang, Huafeng, Zhang, Huaye, Zhang, Hui, Zhang, Hui-Ling, Zhang, Jianbin, Zhang, Jianhua, Zhang, Jing-Pu, Zhang, Kalin, Zhang, Leshuai, Zhang, Lin, Zhang, Lisheng, Zhang, Lu, Zhang, Luoying, Zhang, Menghuan, Zhang, Peng, Zhang, Sheng, Zhang, Wei, Zhang, Xiangnan, Zhang, Xiao-Wei, Zhang, Xiaolei, Zhang, Xiaoyan, Zhang, Xin, Zhang, Xinxin, Zhang, Xu Dong, Zhang, Yang, Zhang, Yanjin, Zhang, Yi, Zhang, Ying-Dong, Zhang, Yingmei, Zhang, Yuan-Yuan, Zhang, Yuchen, Zhang, Zhe, Zhang, Zhengguang, Zhang, Zhibing, Zhang, Zhihai, Zhang, Zhiyong, Zhang, Zili, Zhao, Haobin, Zhao, Lei, Zhao, Shuang, Zhao, Tongbiao, Zhao, Xiao-Fan, Zhao, Ying, Zhao, Yongchao, Zhao, Yongliang, Zhao, Yuting, Zheng, Guoping, Zheng, Kai, Zheng, Ling, Zheng, Shizhong, Zheng, Xi-Long, Zheng, Yi, Zheng, Zu-Guo, Zhivotovsky, Boris, Zhong, Qing, Zhou, Ao, Zhou, Ben, Zhou, Cefan, ZHOU, Gang, Zhou, Hao, Zhou, Hong, Zhou, Hongbo, Zhou, Jie, Zhou, Jing, Zhou, Jiyong, Zhou, Kailiang, Zhou, Rongjia, Zhou, Xu-jie, Zhou, Yanshuang, Zhou, Yinghong, Zhou, Yubin, Zhou, Zheng-Yu, Zhou, Zhou, Zhu, Binglin, Zhu, Changlian, Zhu, Guo-Qing, Zhu, Haining, Zhu, Hongxin, Zhu, Hua, Zhu, Wei-Guo, Zhu, Yanping, Zhu, Yushan, Zhuang, Haixia, Zhuang, Xiaohong, Zientara-Rytter, Katarzyna, Zimmermann, Christine, Ziviani, Elena, Zoladek, Teresa, Zong, Wei-Xing, Zorov, Dmitry, Zorzano, Antonio, Zou, Weiping, Zou, Zhen, Zou, Zhengzhi, Zuryn, Steven, Zwerschke, Werner, Brand-Saberi, Beate, Dong, X Charlie, Kenchappa, Chandra Shekar, Li, Zuguo, Lin, Yong, Oshima, Shigeru, Rong, Yueguang, Sluimer, Judith, Stallings, Christina, Tong, Chun-Kit, Ahmad, S. Tariq, Alim Al-Bari, M. Abdul, Bechara, Luiz R.G., Behrens, Georg M.N., Bhuiyan, Md. Shenuarin, Broaddus, V. Courtney, Buchan, J. Ross, Burón, M. Isabel, Carter, A. Brent, Chan, Matthew T.V., Choi, Augustine M.K., D’Adamo, Stefania, D’Amelio, Marcello, D’Arcangelo, Daniela, D’Lugos, Andrew, D’Orazi, Gabriella, De Meyer, Guido R.Y., Delpino, M. Victoria, Distler, Jörg H.W., Dixon, Ian M.C., Dobson, Renwick C.J., 2nd Dorn, Gerald, Eissa, N. Tony, Engelsen, Agnete S.T., Fairlie, W. Douglas, Ferreira, Julio C.B., H.B., Ranjitha, Hanson, Phyllis I., Hejtmancik, J. Fielding, Ho, Idy H.T., Hobbs, G. Aaron, Hoet, Peter H.M., Huang, Michael L.H., Iyer, Anand Krishnan V., Johnson, Gail V.W., Joosten, Leo A.B., Karim, Md. Razaul, Kaufmann, Stefan H.E., Ko, Ben C.B., Leck, Lionel Y.W., Lima, Thania R.R., Livingston, J. Andrew, Martin, Alexandre P.J., Montes, L. Ruth, Murphy, J. Patrick, Ng, Charlene C.W., Nicolao, M. Celeste, O’Donovan, Tracey, O’Leary, Seónadh, O’Rourke, Eyleen, O’Sullivan, Mary, O’Sullivan, Timothy, Omary, M. Bishr, Pereira, Gustavo J.S., Ratnayaka, J. Arjuna, Riazuddin, S. Amer, Rouschop, Kasper M.A., Sanderson, J. Thomas, Scaglione, K. Matthew, Schapira, Anthony H.V., Scovassi, A. Ivana, St. Clair, Daret, Sunahara, Karen K.S., Symons, J. David, Triola, Gemma, van Wijk, Sjoerd J.L., Vanrell, M. Cristina, Vasconcelos, M. Helena, Whitton, J. Lindsay, Williams, Robin S.B., Wong, W. Wei-Lynn, Wu, William K.K., Yakhine-Diop, Sokhna M.S., Yu, W. Haung, Zhang, Kalin Y.B., Dong, X. Charlie, Ain Shams University [ASU], Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University [JGU], Medical University Graz, Centre de Recherche des Cordeliers [CRC (UMR_S_1138 / U1138)], Institut Pasteur d'Iran, Leibniz Institute of Plant Biochemistry [IPB], The University of Texas M.D. Anderson Cancer Center [Houston], Institut de pharmacologie moléculaire et cellulaire [IPMC], Lipides - Nutrition - Cancer [Dijon - U1231] [LNC], Centre méditerranéen de médecine moléculaire [C3M], Institut de Biologie Valrose [IBV], Petites Molécules de neuroprotection, neurorégénération et remyélinisation, Signalisation Hormonale, Physiopathologie Endocrinienne et Métabolique, Institut Cochin [IC UM3 (UMR 8104 / U1016)], Institut NeuroMyoGène [INMG], Paris-Centre de Recherche Cardiovasculaire [PARCC (UMR_S 970/ U970)], Marqueurs cardiovasculaires en situation de stress [MASCOT (UMR_S_942 / U942)], Institut de Recherche sur le Cancer et le Vieillissement [IRCAN], Centre de Recherche en Cancérologie de Marseille [CRCM], Centre for Integrative Biology - CBI [Inserm U964 - CNRS UMR7104 - IGBMC], Oncogenesis, Stress, Signaling [OSS], Institut Necker Enfants-Malades [INEM - UM 111 (UMR 8253 / U1151)], Institut de Biologie Intégrative de la Cellule [I2BC], Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte [M2iSH], Centre de Recherches en Cancérologie de Toulouse [CRCT], Physiopathologie et traitement des maladies du foie, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL], Institut de Génétique et de Biologie Moléculaire et Cellulaire [IGBMC], Laboratoire Bio-PeroxIL. Biochimie du peroxysome, inflammation et métabolisme lipidique [Dijon] [BIO-PEROXIL], Centre de recherche sur l'Inflammation [CRI (UMR_S_1149 / ERL_8252 / U1149)], Unité de génétique et biologie des cancers [U830], Laboratoire d'Optique et Biosciences [LOB], Institut des Maladies Métaboliques et Casdiovasculaires [UPS/Inserm U1297 - I2MC], Différenciation et communication neuronale et neuroendocrine [DC2N], Institut de Recherche en Cancérologie de Montpellier [IRCM - U1194 Inserm - UM], Centre d'Immunologie de Marseille - Luminy [CIML], Physiopathologie et imagerie des troubles neurologiques [PhIND], Laboratory of Fundamental and Applied Bioenergetics = Laboratoire de bioénergétique fondamentale et appliquée [LBFA], Imagine - Institut des maladies génétiques (IHU) [Imagine - U1163], Institut Mondor de Recherche Biomédicale [IMRB], Franco-czech Laboratory for clinical research on obesity, University of Michigan [Ann Arbor], University of Michigan System, Institut de pharmacologie moléculaire et cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA), Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Centre méditerranéen de médecine moléculaire (C3M), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA), Institut de Biologie Valrose (IBV), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Sud - Paris 11 (UP11), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Université Paris-Sud - Paris 11 (UP11)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AP-HP Hôpital Bicêtre (Le Kremlin-Bicêtre), Nutrition, Métabolisme, Aquaculture (NuMéA), Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Paris-Centre de Recherche Cardiovasculaire (PARCC - UMR-S U970), Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Aix Marseille Université (AMU), Centre for Integrative Biology - CBI (Inserm U964 - CNRS UMR7104 - IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institute of genetics and molecular and cellular biology-Centre National de la Recherche Scientifique (CNRS), Chemistry, Oncogenesis, Stress and Signaling (COSS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CRLCC Eugène Marquis (CRLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre de Recherche en Nutrition Humaine d'Auvergne (CRNH d'Auvergne)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Institut des Maladies Neurodégénératives [Bordeaux] (IMN), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Centre International de Recherche en Infectiologie - UMR (CIRI), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physiologie et Génomique des Poissons (LPGP), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Laboratoire Bio-PeroxIL. Biochimie du peroxysome, inflammation et métabolisme lipidique [Dijon] (BIO-PEROXIL), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Centre de recherche sur l'Inflammation (CRI (UMR_S_1149 / ERL_8252 / U1149)), Institut Jean-Pierre Bourgin (IJPB), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de génétique et biologie des cancers (U830), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Optique et Biosciences (LOB), École polytechnique (X)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Différenciation et communication neuronale et neuroendocrine (DC2N), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM), CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Centre d'Immunologie de Marseille - Luminy (CIML), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Physiopathologie et imagerie des troubles neurologiques (PhIND), Université de Caen Normandie (UNICAEN), Laboratory of Fundamental and Applied Bioenergetics = Laboratoire de bioénergétique fondamentale et appliquée (LBFA), Université Grenoble Alpes (UGA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Epithelial biology and disease - Liliane Bettencourt Chair of Developmental Biology (Equipe Inserm U1163), Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Biomécanique cellulaire et respiratoire (BCR), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Charles University [Prague]-Institut National de la Santé et de la Recherche Médicale (INSERM), This work was supported by the National Institute of General Medical Sciences [GM131919]., Université Paris-Sud - Paris 11 (UP11)-Institut National de la Santé et de la Recherche Médicale (INSERM), Marqueurs cardiovasculaires en situation de stress (MASCOT (UMR_S_942 / U942)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Université Sorbonne Paris Nord, Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Physiopathologie des Adaptations Nutritionnelles (PhAN), Université de Nantes (UN)-Institut National de la Recherche Agronomique (INRA), Département Plateforme (PF I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Gustave Roussy (IGR), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), Chinese Academy of Medical Sciences [Suzhou, Chine] (CAMS), Karolinska Institutet [Stockholm], Karolinska University Hospital [Stockholm], Department of Women's and Children's Health [Stockholm, Sweden], Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École polytechnique (X), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, FHU OncoAge - Pathologies liées à l’âge [CHU Nice] (OncoAge), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Institut de Pharmacologie Moléculaire et Cellulaire [UNIV Côte d'Azur] (UPMC), Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM), Life Sciences Institute [Ann Arbor, MI, USA], University of Michigan System-University of Michigan System, European Institute of Oncology IRCCS [Milan, Italy] (EIO), Ain Shams University (ASU), Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Réseau International des Instituts Pasteur (RIIP), Leibniz Institute of Plant Biochemistry (IPB), Hebrew University of Jerusalem, Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Agro Dijon, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Paris-Centre de Recherche Cardiovasculaire (PARCC (UMR_S 970/ U970)), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Université Sorbonne Paris Nord, Aix Marseille Université (AMU)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Oncogenesis, Stress, Signaling (OSS), Institut des Maladies Métaboliques et Casdiovasculaires (UPS/Inserm U1297 - I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Institut Mondor de Recherche Biomédicale (IMRB), Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Charles University [Prague] (CU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M. H., Abudu, Y. P., Acevedo-Arozena, A., Adamopoulos, I. E., Adeli, K., Adolph, T. E., Adornetto, A., Aflaki, E., Agam, G., Agarwal, A., Aggarwal, B. B., Agnello, M., Agostinis, P., Agrewala, J. N., Agrotis, A., Aguilar, P. V., Ahmad, S. T., Ahmed, Z. M., Ahumada-Castro, U., Aits, S., Aizawa, S., Akkoc, Y., Akoumianaki, T., Akpinar, H. A., Al-Abd, A. M., Al-Akra, L., Al-Gharaibeh, A., Alaoui-Jamali, M. A., Alberti, S., Alcocer-Gomez, E., Alessandri, C., Ali, M., Alim Al-Bari, M. A., Aliwaini, S., Alizadeh, J., Almacellas, E., Almasan, A., Alonso, A., Alonso, G. D., Altan-Bonnet, N., Altieri, D. C., Alvarez, E. M. C., Alves, S., Alves da Costa, C., Alzaharna, M. M., Amadio, M., Amantini, C., Amaral, C., Ambrosio, S., Amer, A. O., Ammanathan, V., An, Z., Andersen, S. U., Andrabi, S. A., Andrade-Silva, M., Andres, A. M., Angelini, S., Ann, D., Anozie, U. C., Ansari, M. Y., Antas, P., Antebi, A., Anton, Z., Anwar, T., Apetoh, L., Apostolova, N., Araki, T., Araki, Y., Arasaki, K., Araujo, W. L., Araya, J., Arden, C., Arevalo, M. -A., Arguelles, S., Arias, E., Arikkath, J., Arimoto, H., Ariosa, A. R., Armstrong-James, D., Arnaune-Pelloquin, L., Aroca, A., Arroyo, D. S., Arsov, I., Artero, R., Asaro, D. M. L., Aschner, M., Ashrafizadeh, M., Ashur-Fabian, O., Atanasov, A. G., Au, A. K., Auberger, P., Auner, H. W., Aurelian, L., Autelli, R., Avagliano, L., Avalos, Y., Aveic, S., Aveleira, C. A., Avin-Wittenberg, T., Aydin, Y., Ayton, S., Ayyadevara, S., Azzopardi, M., Baba, M., Backer, J. M., Backues, S. K., Bae, D. -H., Bae, O. -N., Bae, S. H., Baehrecke, E. H., Baek, A., Baek, S. -H., Baek, S. H., Bagetta, G., Bagniewska-Zadworna, A., Bai, H., Bai, J., Bai, X., Bai, Y., Bairagi, N., Baksi, S., Balbi, T., Baldari, C. T., Balduini, W., Ballabio, A., Ballester, M., Balazadeh, S., Balzan, R., Bandopadhyay, R., Banerjee, S., Banreti, A., Bao, Y., Baptista, M. S., Baracca, A., Barbati, C., Bargiela, A., Barila, D., Barlow, P. G., Barmada, S. J., Barreiro, E., Barreto, G. E., Bartek, J., Bartel, B., Bartolome, A., Barve, G. R., Basagoudanavar, S. H., Bassham, D. C., Bast, R. C., Basu, A., Batoko, H., Batten, I., Baulieu, E. E., Baumgarner, B. L., Bayry, J., Beale, R., Beau, I., Beaumatin, F., Bechara, L. R. G., Beck, G. R., Beers, M. F., Begun, J., Behrends, C., Behrens, G. M. N., Bei, R., Bejarano, E., Bel, S., Behl, C., Belaid, A., Belgareh-Touze, N., Bellarosa, C., Belleudi, F., Bello Perez, M., Bello-Morales, R., Beltran, J. S. D. O., Beltran, S., Benbrook, D. M., Bendorius, M., Benitez, B. A., Benito-Cuesta, I., Bensalem, J., Berchtold, M. W., Berezowska, S., Bergamaschi, D., Bergami, M., Bergmann, A., Berliocchi, L., Berlioz-Torrent, C., Bernard, A., Berthoux, L., Besirli, C. G., Besteiro, S., Betin, V. M., Beyaert, R., Bezbradica, J. S., Bhaskar, K., Bhatia-Kissova, I., Bhattacharya, R., Bhattacharya, S., Bhattacharyya, S., Bhuiyan, M. S., Bhutia, S. K., Bi, L., Bi, X., Biden, T. J., Bijian, K., Billes, V. A., Binart, N., Bincoletto, C., Birgisdottir, A. B., Bjorkoy, G., Blanco, G., Blas-Garcia, A., Blasiak, J., Blomgran, R., Blomgren, K., Blum, J. S., Boada-Romero, E., Boban, M., Boesze-Battaglia, K., Boeuf, P., Boland, B., Bomont, P., Bonaldo, P., Bonam, S. R., Bonfili, L., Bonifacino, J. S., Boone, B. A., Bootman, M. D., Bordi, M., Borner, C., Bornhauser, B. C., Borthakur, G., Bosch, J., Bose, S., Botana, L. M., Botas, J., Boulanger, C. M., Boulton, M. E., Bourdenx, M., Bourgeois, B., Bourke, N. M., Bousquet, G., Boya, P., Bozhkov, P. V., Bozi, L. H. M., Bozkurt, T. O., Brackney, D. E., Brandts, C. H., Braun, R. J., Braus, G. H., Bravo-Sagua, R., Bravo-San Pedro, J. M., Brest, P., Bringer, M. -A., Briones-Herrera, A., Broaddus, V. C., Brodersen, P., Brodsky, J. L., Brody, S. L., Bronson, P. G., Bronstein, J. M., Brown, C. N., Brown, R. E., Brum, P. C., Brumell, J. H., Brunetti-Pierri, N., Bruno, D., Bryson-Richardson, R. J., Bucci, C., Buchrieser, C., Bueno, M., Buitrago-Molina, L. E., Buraschi, S., Buch, S., Buchan, J. R., Buckingham, E. M., Budak, H., Budini, M., Bultynck, G., Burada, F., Burgoyne, J. R., Buron, M. I., Bustos, V., Buttner, S., Butturini, E., Byrd, A., Cabas, I., Cabrera-Benitez, S., Cadwell, K., Cai, J., Cai, L., Cai, Q., Cairo, M., Calbet, J. A., Caldwell, G. A., Caldwell, K. A., Call, J. A., Calvani, R., Calvo, A. C., Calvo-Rubio Barrera, M., Camara, N. O. S., Camonis, J. H., Camougrand, N., Campanella, M., Campbell, E. M., Campbell-Valois, F. -X., Campello, S., Campesi, I., Campos, J. C., Camuzard, O., Cancino, J., Candido de Almeida, D., Canesi, L., Caniggia, I., Canonico, B., Canti, C., Cao, B., Caraglia, M., Carames, B., Carchman, E. H., Cardenal-Munoz, E., Cardenas, C., Cardenas, L., Cardoso, S. M., Carew, J. S., Carle, G. F., Carleton, G., Carloni, S., Carmona-Gutierrez, D., Carneiro, L. A., Carnevali, O., Carosi, J. M., Carra, S., Carrier, A., Carrier, L., Carroll, B., Carter, A. B., Carvalho, A. N., Casanova, M., Casas, C., Casas, J., Cassioli, C., Castillo, E. F., Castillo, K., Castillo-Lluva, S., Castoldi, F., Castori, M., Castro, A. F., Castro-Caldas, M., Castro-Hernandez, J., Castro-Obregon, S., Catz, S. D., Cavadas, C., Cavaliere, F., Cavallini, G., Cavinato, M., Cayuela, M. L., Cebollada Rica, P., Cecarini, V., Cecconi, F., Cechowska-Pasko, M., Cenci, S., Ceperuelo-Mallafre, V., Cerqueira, J. J., Cerutti, J. M., Cervia, D., Cetintas, V. B., Cetrullo, S., Chae, H. -J., Chagin, A. S., Chai, C. -Y., Chakrabarti, G., Chakrabarti, O., Chakraborty, T., Chami, M., Chamilos, G., Chan, D. W., Chan, E. Y. W., Chan, E. D., Chan, H. Y. E., Chan, H. H., Chan, H., Chan, M. T. V., Chan, Y. S., Chandra, P. K., Chang, C. -P., Chang, C., Chang, H. -C., Chang, K., Chao, J., Chapman, T., Charlet-Berguerand, N., Chatterjee, S., Chaube, S. K., Chaudhary, A., Chauhan, S., Chaum, E., Checler, F., Cheetham, M. E., Chen, C. -S., Chen, G. -C., Chen, J. -F., Chen, L. L., Chen, L., Chen, M., Chen, M. -K., Chen, N., Chen, Q., Chen, R. -H., Chen, S., Chen, W., Chen, X. -M., Chen, X. -W., Chen, X., Chen, Y., Chen, Y. -G., Chen, Y. -J., Chen, Y. -Q., Chen, Z. S., Chen, Z., Chen, Z. -H., Chen, Z. J., Cheng, H., Cheng, J., Cheng, S. -Y., Cheng, W., Cheng, X., Cheng, X. -T., Cheng, Y., Cheng, Z., Cheong, H., Cheong, J. K., Chernyak, B. V., Cherry, S., Cheung, C. F. R., Cheung, C. H. A., Cheung, K. -H., Chevet, E., Chi, R. J., Chiang, A. K. S., Chiaradonna, F., Chiarelli, R., Chiariello, M., Chica, N., Chiocca, S., Chiong, M., Chiou, S. -H., Chiramel, A. I., Chiurchiu, V., Cho, D. -H., Choe, S. -K., Choi, A. M. K., Choi, M. E., Choudhury, K. R., Chow, N. S., Chu, C. T., Chua, J. P., Chua, J. J. E., Chung, H., Chung, K. P., Chung, S., Chung, S. -H., Chung, Y. -L., Cianfanelli, V., Ciechomska, I. A., Cifuentes, M., Cinque, L., Cirak, S., Cirone, M., Clague, M. J., Clarke, R., Clementi, E., Coccia, E. M., Codogno, P., Cohen, E., Cohen, M. M., Colasanti, T., Colasuonno, F., Colbert, R. A., Colell, A., Colic, M., Coll, N. S., Collins, M. O., Colombo, M. I., Colon-Ramos, D. A., Combaret, L., Comincini, S., Cominetti, M. R., Consiglio, A., Conte, A., Conti, F., Contu, V. R., Cookson, M. R., Coombs, K. M., Coppens, I., Corasaniti, M. T., Corkery, D. P., Cordes, N., Cortese, K., Costa, M. D. C., Costantino, S., Costelli, P., Coto-Montes, A., Crack, P. J., Crespo, J. L., Criollo, A., Crippa, V., Cristofani, R., Csizmadia, T., Cuadrado, A., Cui, B., Cui, J., Cui, Y., Culetto, E., Cumino, A. C., Cybulsky, A. V., Czaja, M. J., Czuczwar, S. J., D'Adamo, S., D'Amelio, M., D'Arcangelo, D., D'Lugos, A. C., D'Orazi, G., da Silva, J. A., Dafsari, H. S., Dagda, R. K., Dagdas, Y., Daglia, M., Dai, X., Dai, Y., Dal Col, J., Dalhaimer, P., Dalla Valle, L., Dallenga, T., Dalmasso, G., Damme, M., Dando, I., Dantuma, N. P., Darling, A. L., Das, H., Dasarathy, S., Dasari, S. K., Dash, S., Daumke, O., Dauphinee, A. N., Davies, J. S., Davila, V. A., Davis, R. J., Davis, T., Dayalan Naidu, S., De Amicis, F., De Bosscher, K., De Felice, F., De Franceschi, L., De Leonibus, C., de Mattos Barbosa, M. G., De Meyer, G. R. Y., De Milito, A., De Nunzio, C., De Palma, C., De Santi, M., De Virgilio, C., De Zio, D., Debnath, J., Debosch, B. J., Decuypere, J. -P., Deehan, M. A., Deflorian, G., Degregori, J., Dehay, B., Del Rio, G., Delaney, J. R., Delbridge, L. M. D., Delorme-Axford, E., Delpino, M. V., Demarchi, F., Dembitz, V., Demers, N. D., Deng, H., Deng, Z., Dengjel, J., Dent, P., Denton, D., Depamphilis, M. L., Der, C. J., Deretic, V., Descoteaux, A., Devis, L., Devkota, S., Devuyst, O., Dewson, G., Dharmasivam, M., Dhiman, R., di Bernardo, D., Di Cristina, M., Di Domenico, F., Di Fazio, P., Di Fonzo, A., Di Guardo, G., Di Guglielmo, G. M., Di Leo, L., Di Malta, C., Di Nardo, A., Di Rienzo, M., Di Sano, F., Diallinas, G., Diao, J., Diaz-Araya, G., Diaz-Laviada, I., Dickinson, J. M., Diederich, M., Dieude, M., Dikic, I., Ding, S., Ding, W. -X., Dini, L., Dinic, J., Dinic, M., Dinkova-Kostova, A. T., Dionne, M. S., Distler, J. H. W., Diwan, A., Dixon, I. M. C., Djavaheri-Mergny, M., Dobrinski, I., Dobrovinskaya, O., Dobrowolski, R., Dobson, R. C. J., Dokic, J., Dokmeci Emre, S., Donadelli, M., Dong, B., Dong, X., Dong, Z., Dorn II, G. W., Dotsch, V., Dou, H., Dou, J., Dowaidar, M., Dridi, S., Drucker, L., Du, A., Du, C., Du, G., Du, H. -N., Du, L. -L., du Toit, A., Duan, S. -B., Duan, X., Duarte, S. P., Dubrovska, A., Dunlop, E. A., Dupont, N., Duran, R. V., Dwarakanath, B. S., Dyshlovoy, S. A., Ebrahimi-Fakhari, D., Eckhart, L., Edelstein, C. L., Efferth, T., Eftekharpour, E., Eichinger, L., Eid, N., Eisenberg, T., Eissa, N. T., Eissa, S., Ejarque, M., El Andaloussi, A., El-Hage, N., El-Naggar, S., Eleuteri, A. M., El-Shafey, E. S., Elgendy, M., Eliopoulos, A. G., Elizalde, M. M., Elks, P. M., Elsasser, H. -P., Elsherbiny, E. S., Emerling, B. M., Emre, N. C. T., Eng, C. H., Engedal, N., Engelbrecht, A. -M., Engelsen, A. S. T., Enserink, J. M., Escalante, R., Esclatine, A., Escobar-Henriques, M., Eskelinen, E. -L., Espert, L., Eusebio, M. -O., Fabrias, G., Fabrizi, C., Facchiano, A., Facchiano, F., Fadeel, B., Fader, C., Faesen, A. C., Fairlie, W. D., Falco, A., Falkenburger, B. H., Fan, D., Fan, J., Fan, Y., Fang, E. F., Fang, Y., Fanto, M., Farfel-Becker, T., Faure, M., Fazeli, G., Fedele, A. O., Feldman, A. M., Feng, D., Feng, J., Feng, L., Feng, Y., Feng, W., Fenz Araujo, T., Ferguson, T. A., Fernandez, A. F., Fernandez-Checa, J. C., Fernandez-Veledo, S., Fernie, A. R., Ferrante, A. W., Ferraresi, A., Ferrari, M. F., Ferreira, J. C. B., Ferro-Novick, S., Figueras, A., Filadi, R., Filigheddu, N., Filippi-Chiela, E., Filomeni, G., Fimia, G. M., Fineschi, V., Finetti, F., Finkbeiner, S., Fisher, E. A., Fisher, P. B., Flamigni, F., Fliesler, S. J., Flo, T. H., Florance, I., Florey, O., Florio, T., Fodor, E., Follo, C., Fon, E. A., Forlino, A., Fornai, F., Fortini, P., Fracassi, A., Fraldi, A., Franco, B., Franco, R., Franconi, F., Frankel, L. B., Friedman, S. L., Frohlich, L. F., Fruhbeck, G., Fuentes, J. M., Fujiki, Y., Fujita, N., Fujiwara, Y., Fukuda, M., Fulda, S., Furic, L., Furuya, N., Fusco, C., Gack, M. U., Gaffke, L., Galadari, S., Galasso, A., Galindo, M. F., Gallolu Kankanamalage, S., Galluzzi, L., Galy, V., Gammoh, N., Gan, B., Ganley, I. G., Gao, F., Gao, H., Gao, M., Gao, P., Gao, S. -J., Gao, W., Gao, X., Garcera, A., Garcia, M. N., Garcia, V. E., Garcia-Del Portillo, F., Garcia-Escudero, V., Garcia-Garcia, A., Garcia-Macia, M., Garcia-Moreno, D., Garcia-Ruiz, C., Garcia-Sanz, P., Garg, A. D., Gargini, R., Garofalo, T., Garry, R. F., Gassen, N. C., Gatica, D., Ge, L., Ge, W., Geiss-Friedlander, R., Gelfi, C., Genschik, P., Gentle, I. E., Gerbino, V., Gerhardt, C., Germain, K., Germain, M., Gewirtz, D. A., Ghasemipour Afshar, E., Ghavami, S., Ghigo, A., Ghosh, M., Giamas, G., Giampietri, C., Giatromanolaki, A., Gibson, G. E., Gibson, S. B., Ginet, V., Giniger, E., Giorgi, C., Girao, H., Girardin, S. E., Giridharan, M., Giuliano, S., Giulivi, C., Giuriato, S., Giustiniani, J., Gluschko, A., Goder, V., Goginashvili, A., Golab, J., Goldstone, D. C., Golebiewska, A., Gomes, L. R., Gomez, R., Gomez-Sanchez, R., Gomez-Puerto, M. C., Gomez-Sintes, R., Gong, Q., Goni, F. M., Gonzalez-Gallego, J., Gonzalez-Hernandez, T., Gonzalez-Polo, R. A., Gonzalez-Reyes, J. A., Gonzalez-Rodriguez, P., Goping, I. S., Gorbatyuk, M. S., Gorbunov, N. V., Gorgulu, K., Gorojod, R. M., Gorski, S. M., Goruppi, S., Gotor, C., Gottlieb, R. A., Gozes, I., Gozuacik, D., Graef, M., Graler, M. H., Granatiero, V., Grasso, D., Gray, J. P., Green, D. R., Greenhough, A., Gregory, S. L., Griffin, E. F., Grinstaff, M. W., Gros, F., Grose, C., Gross, A. S., Gruber, F., Grumati, P., Grune, T., Gu, X., Guan, J. -L., Guardia, C. M., Guda, K., Guerra, F., Guerri, C., Guha, P., Guillen, C., Gujar, S., Gukovskaya, A., Gukovsky, I., Gunst, J., Gunther, A., Guntur, A. R., Guo, C., Guo, H., Guo, L. -W., Guo, M., Gupta, P., Gupta, S. K., Gupta, S., Gupta, V. B., Gupta, V., Gustafsson, A. B., Gutterman, D. D., H. B, R., Haapasalo, A., Haber, J. E., Hac, A., Hadano, S., Hafren, A. J., Haidar, M., Hall, B. S., Hallden, G., Hamacher-Brady, A., Hamann, A., Hamasaki, M., Han, W., Hansen, M., Hanson, P. I., Hao, Z., Harada, M., Harhaji-Trajkovic, L., Hariharan, N., Haroon, N., Harris, J., Hasegawa, T., Hasima Nagoor, N., Haspel, J. A., Haucke, V., Hawkins, W. D., Hay, B. A., Haynes, C. M., Hayrabedyan, S. B., Hays, T. S., He, C., He, Q., He, R. -R., He, Y. -W., He, Y. -Y., Heakal, Y., Heberle, A. M., Hejtmancik, J. F., Helgason, G. V., Henkel, V., Herb, M., Hergovich, A., Herman-Antosiewicz, A., Hernandez, A., Hernandez, C., Hernandez-Diaz, S., Hernandez-Gea, V., Herpin, A., Herreros, J., Hervas, J. H., Hesselson, D., Hetz, C., Heussler, V. T., Higuchi, Y., Hilfiker, S., Hill, J. A., Hlavacek, W. S., Ho, E. A., Ho, I. H. T., Ho, P. W. -L., Ho, S. -L., Ho, W. Y., Hobbs, G. A., Hochstrasser, M., Hoet, P. H. M., Hofius, D., Hofman, P., Hohn, A., Holmberg, C. I., Hombrebueno, J. R., Yi-Ren Hong, C. -W. H., Hooper, L. V., Hoppe, T., Horos, R., Hoshida, Y., Hsin, I. -L., Hsu, H. -Y., Hu, B., Hu, D., Hu, L. -F., Hu, M. C., Hu, R., Hu, W., Hu, Y. -C., Hu, Z. -W., Hua, F., Hua, J., Hua, Y., Huan, C., Huang, C., Huang, H., Huang, K., Huang, M. L. H., Huang, R., Huang, S., Huang, T., Huang, X., Huang, Y. J., Huber, T. B., Hubert, V., Hubner, C. A., Hughes, S. M., Hughes, W. E., Humbert, M., Hummer, G., Hurley, J. H., Hussain, S., Hussey, P. J., Hutabarat, M., Hwang, H. -Y., Hwang, S., Ieni, A., Ikeda, F., Imagawa, Y., Imai, Y., Imbriano, C., Imoto, M., Inman, D. M., Inoki, K., Iovanna, J., Iozzo, R. V., Ippolito, G., Irazoqui, J. E., Iribarren, P., Ishaq, M., Ishikawa, M., Ishimwe, N., Isidoro, C., Ismail, N., Issazadeh-Navikas, S., Itakura, E., Ito, D., Ivankovic, D., Ivanova, S., Iyer, A. K. V., Izquierdo, J. M., Izumi, M., Jaattela, M., Jabir, M. S., Jackson, W. T., Jacobo-Herrera, N., Jacomin, A. -C., Jacquin, E., Jadiya, P., Jaeschke, H., Jagannath, C., Jakobi, A. J., Jakobsson, J., Janji, B., Jansen-Durr, P., Jansson, P. J., Jantsch, J., Januszewski, S., Jassey, A., Jean, S., Jeltsch-David, H., Jendelova, P., Jenny, A., Jensen, T. E., Jessen, N., Jewell, J. L., Ji, J., Jia, L., Jia, R., Jiang, L., Jiang, Q., Jiang, R., Jiang, T., Jiang, X., Jiang, Y., Jimenez-Sanchez, M., Jin, E. -J., Jin, F., Jin, H., Jin, L., Jin, M., Jin, S., Jo, E. -K., Joffre, C., Johansen, T., Johnson, G. V. W., Johnston, S. A., Jokitalo, E., Jolly, M. K., Joosten, L. A. B., Jordan, J., Joseph, B., Ju, D., Ju, J. -S., Ju, J., Juarez, E., Judith, D., Juhasz, G., Jun, Y., Jung, C. H., Jung, S. -C., Jung, Y. K., Jungbluth, H., Jungverdorben, J., Just, S., Kaarniranta, K., Kaasik, A., Kabuta, T., Kaganovich, D., Kahana, A., Kain, R., Kajimura, S., Kalamvoki, M., Kalia, M., Kalinowski, D. S., Kaludercic, N., Kalvari, I., Kaminska, J., Kaminskyy, V. O., Kanamori, H., Kanasaki, K., Kang, C., Kang, R., Kang, S. S., Kaniyappan, S., Kanki, T., Kanneganti, T. -D., Kanthasamy, A. G., Kanthasamy, A., Kantorow, M., Kapuy, O., Karamouzis, M. V., Karim, M. R., Karmakar, P., Katare, R. G., Kato, M., Kaufmann, S. H. E., Kauppinen, A., Kaushal, G. P., Kaushik, S., Kawasaki, K., Kazan, K., Ke, P. -Y., Keating, D. J., Keber, U., Kehrl, J. H., Keller, K. E., Keller, C. W., Kemper, J. K., Kenific, C. M., Kepp, O., Kermorgant, S., Kern, A., Ketteler, R., Keulers, T. G., Khalfin, B., Khalil, H., Khambu, B., Khan, S. Y., Khandelwal, V. K. M., Khandia, R., Kho, W., Khobrekar, N. V., Khuansuwan, S., Khundadze, M., Killackey, S. A., Kim, D., Kim, D. R., Kim, D. -H., Kim, D. -E., Kim, E. Y., Kim, E. -K., Kim, H. -R., Kim, H. -S., Hyung-Ryong, Kim, Kim, J. H., Kim, J. K., Kim, J. -H., Kim, J., Kim, K. I., Kim, P. K., Kim, S. -J., Kimball, S. R., Kimchi, A., Kimmelman, A. C., Kimura, T., King, M. A., Kinghorn, K. J., Kinsey, C. G., Kirkin, V., Kirshenbaum, L. A., Kiselev, S. L., Kishi, S., Kitamoto, K., Kitaoka, Y., Kitazato, K., Kitsis, R. N., Kittler, J. T., Kjaerulff, O., Klein, P. S., Klopstock, T., Klucken, J., Knaevelsrud, H., Knorr, R. L., Ko, B. C. B., Ko, F., Ko, J. -L., Kobayashi, H., Kobayashi, S., Koch, I., Koch, J. C., Koenig, U., Kogel, D., Koh, Y. H., Koike, M., Kohlwein, S. D., Kocaturk, N. M., Komatsu, M., Konig, J., Kono, T., Kopp, B. T., Korcsmaros, T., Korkmaz, G., Korolchuk, V. I., Korsnes, M. S., Koskela, A., Kota, J., Kotake, Y., Kotler, M. L., Kou, Y., Koukourakis, M. I., Koustas, E., Kovacs, A. L., Kovacs, T., Koya, D., Kozako, T., Kraft, C., Krainc, D., Kramer, H., Krasnodembskaya, A. D., Kretz-Remy, C., Kroemer, G., Ktistakis, N. T., Kuchitsu, K., Kuenen, S., Kuerschner, L., Kukar, T., Kumar, A., Kumar, D., Kumar, S., Kume, S., Kumsta, C., Kundu, C. N., Kundu, M., Kunnumakkara, A. B., Kurgan, L., Kutateladze, T. G., Kutlu, O., Kwak, S., Kwon, H. J., Kwon, T. K., Kwon, Y. T., Kyrmizi, I., La Spada, A., Labonte, P., Ladoire, S., Laface, I., Lafont, F., Lagace, D. C., Lahiri, V., Lai, Z., Laird, A. S., Lakkaraju, A., Lamark, T., Lan, S. -H., Landajuela, A., Lane, D. J. R., Lane, J. D., Lang, C. H., Lange, C., Langel, U., Langer, R., Lapaquette, P., Laporte, J., Larusso, N. F., Lastres-Becker, I., Lau, W. C. Y., Laurie, G. W., Lavandero, S., Law, B. Y. K., Law, H. K. -W., Layfield, R., Le, W., Le Stunff, H., Leary, A. Y., Lebrun, J. -J., Leck, L. Y. W., Leduc-Gaudet, J. -P., Lee, C., Lee, C. -P., Lee, D. -H., Lee, E. B., Lee, E. F., Lee, G. M., Lee, H. -J., Lee, H. K., Lee, J. M., Lee, J. S., Lee, J. -A., Lee, J. -Y., Lee, J. H., Lee, M., Lee, M. G., Lee, M. J., Lee, M. -S., Lee, S. Y., Lee, S. -J., Lee, S. B., Lee, W. H., Lee, Y. -R., Lee, Y. -H., Lee, Y., Lefebvre, C., Legouis, R., Lei, Y. L., Lei, Y., Leikin, S., Leitinger, G., Lemus, L., Leng, S., Lenoir, O., Lenz, G., Lenz, H. J., Lenzi, P., Leon, Y., Leopoldino, A. M., Leschczyk, C., Leskela, S., Letellier, E., Leung, C. -T., Leung, P. S., Leventhal, J. S., Levine, B., Lewis, P. A., Ley, K., Li, B., Li, D. -Q., Li, J., Li, K., Li, L., Li, M., Li, P. -L., Li, M. -Q., Li, Q., Li, S., Li, T., Li, W., Li, X., Li, Y. -P., Li, Y., Li, Z., Lian, J., Liang, C., Liang, Q., Liang, W., Liang, Y., Liao, G., Liao, L., Liao, M., Liao, Y. -F., Librizzi, M., Lie, P. P. Y., Lilly, M. A., Lim, H. J., Lima, T. R. R., Limana, F., Lin, C., Lin, C. -W., Lin, D. -S., Lin, F. -C., Lin, J. D., Lin, K. M., Lin, K. -H., Lin, L. -T., Lin, P. -H., Lin, Q., Lin, S., Lin, S. -J., Lin, W., Lin, X., Lin, Y. -X., Lin, Y. -S., Linden, R., Lindner, P., Ling, S. -C., Lingor, P., Linnemann, A. K., Liou, Y. -C., Lipinski, M. M., Lipovsek, S., Lira, V. A., Lisiak, N., Liton, P. B., Liu, C., Liu, C. -H., Liu, C. -F., Liu, C. H., Liu, F., Liu, H., Liu, H. -S., Liu, H. -F., Liu, J., Liu, L., Liu, M., Liu, Q., Liu, W., Liu, X. -H., Liu, X., Liu, Y., Livingston, J. A., Lizard, G., Lizcano, J. M., Ljubojevic-Holzer, S., Lleonart, M. E., Llobet-Navas, D., Llorente, A., Lo, C. H., Lobato-Marquez, D., Long, Q., Long, Y. C., Loos, B., Loos, J. A., Lopez, M. G., Lopez-Domenech, G., Lopez-Guerrero, J. A., Lopez-Jimenez, A. T., Lopez-Perez, O., Lopez-Valero, I., Lorenowicz, M. J., Lorente, M., Lorincz, P., Lossi, L., Lotersztajn, S., Lovat, P. E., Lovell, J. F., Lovy, A., Low, P., Lu, G., Lu, H., Lu, J. -H., Lu, J. -J., Lu, M., Lu, S., Luciani, A., Lucocq, J. M., Ludovico, P., Luftig, M. A., Luhr, M., Luis-Ravelo, D., Lum, J. J., Luna-Dulcey, L., Lund, A. H., Lund, V. K., Lunemann, J. D., Luningschror, P., Luo, H., Luo, R., Luo, S., Luo, Z., Luparello, C., Luscher, B., Luu, L., Lyakhovich, A., Lyamzaev, K. G., Lystad, A. H., Lytvynchuk, L., Ma, A. C., Ma, C., Ma, M., Ma, N. -F., Ma, Q. -H., Ma, X., Ma, Y., Ma, Z., Macdougald, O. A., Macian, F., Macintosh, G. C., Mackeigan, J. P., Macleod, K. F., Maday, S., Madeo, F., Madesh, M., Madl, T., Madrigal-Matute, J., Maeda, A., Maejima, Y., Magarinos, M., Mahavadi, P., Maiani, E., Maiese, K., Maiti, P., Maiuri, M. C., Majello, B., Major, M. B., Makareeva, E., Malik, F., Mallilankaraman, K., Malorni, W., Maloyan, A., Mammadova, N., Man, G. C. W., Manai, F., Mancias, J. D., Mandelkow, E. -M., Mandell, M. A., Manfredi, A. A., Manjili, M. H., Manjithaya, R., Manque, P., Manshian, B. B., Manzano, R., Manzoni, C., Mao, K., Marchese, C., Marchetti, S., Marconi, A. M., Marcucci, F., Mardente, S., Mareninova, O. A., Margeta, M., Mari, M., Marinelli, S., Marinelli, O., Marino, G., Mariotto, S., Marshall, R. S., Marten, M. R., Martens, S., Martin, A. P. J., Martin, K. R., Martin, S., Martin-Segura, A., Martin-Acebes, M. A., Martin-Burriel, I., Martin-Rincon, M., Martin-Sanz, P., Martina, J. A., Martinet, W., Martinez, A., Martinez, J., Martinez Velazquez, M., Martinez-Lopez, N., Martinez-Vicente, M., Martins, D. O., Martins, J. O., Martins, W. K., Martins-Marques, T., Marzetti, E., Masaldan, S., Masclaux-Daubresse, C., Mashek, D. G., Massa, V., Massieu, L., Masson, G. R., Masuelli, L., Masyuk, A. I., Masyuk, T. V., Matarrese, P., Matheu, A., Matoba, S., Matsuzaki, S., Mattar, P., Matte, A., Mattoscio, D., Mauriz, J. L., Mauthe, M., Mauvezin, C., Maverakis, E., Maycotte, P., Mayer, J., Mazzoccoli, G., Mazzoni, C., Mazzulli, J. R., Mccarty, N., Mcdonald, C., Mcgill, M. R., Mckenna, S. L., Mclaughlin, B., Mcloughlin, F., Mcniven, M. A., Mcwilliams, T. G., Mechta-Grigoriou, F., Medeiros, T. C., Medina, D. L., Megeney, L. A., Megyeri, K., Mehrpour, M., Mehta, J. L., Meijer, A. J., Meijer, A. H., Mejlvang, J., Melendez, A., Melk, A., Memisoglu, G., Mendes, A. F., Meng, D., Meng, F., Meng, T., Menna-Barreto, R., Menon, M. B., Mercer, C., Mercier, A. E., Mergny, J. -L., Merighi, A., Merkley, S. D., Merla, G., Meske, V., Mestre, A. C., Metur, S. P., Meyer, C., Meyer, H., Mi, W., Mialet-Perez, J., Miao, J., Micale, L., Miki, Y., Milan, E., Milczarek, M., Miller, D. L., Miller, S. I., Miller, S., Millward, S. W., Milosevic, I., Minina, E. A., Mirzaei, H., Mirzaei, H. R., Mirzaei, M., Mishra, A., Mishra, N., Mishra, P. K., Misirkic Marjanovic, M., Misasi, R., Misra, A., Misso, G., Mitchell, C., Mitou, G., Miura, T., Miyamoto, S., Miyazaki, M., Miyazaki, T., Miyazawa, K., Mizushima, N., Mogensen, T. H., Mograbi, B., Mohammadinejad, R., Mohamud, Y., Mohanty, A., Mohapatra, S., Mohlmann, T., Mohmmed, A., Moles, A., Moley, K. H., Molinari, M., Mollace, V., Moller, A. B., Mollereau, B., Mollinedo, F., Montagna, C., Monteiro, M. J., Montella, A., Montes, L. R., Montico, B., Mony, V. K., Monzio Compagnoni, G., Moore, M. N., Moosavi, M. A., Mora, A. L., Mora, M., Morales-Alamo, D., Moratalla, R., Moreira, P. I., Morelli, E., Moreno, S., Moreno-Blas, D., Moresi, V., Morga, B., Morgan, A. H., Morin, F., Morishita, H., Moritz, O. L., Moriyama, M., Moriyasu, Y., Morleo, M., Morselli, E., Moruno-Manchon, J. F., Moscat, J., Mostowy, S., Motori, E., Moura, A. F., Moustaid-Moussa, N., Mrakovcic, M., Mucino-Hernandez, G., Mukherjee, A., Mukhopadhyay, S., Mulcahy Levy, J. M., Mulero, V., Muller, S., Munch, C., Munjal, A., Munoz-Canoves, P., Munoz-Galdeano, T., Munz, C., Murakawa, T., Muratori, C., Murphy, B. M., Murphy, J. P., Murthy, A., Myohanen, T. T., Mysorekar, I. U., Mytych, J., Nabavi, S. M., Nabissi, M., Nagy, P., Nah, J., Nahimana, A., Nakagawa, I., Nakamura, K., Nakatogawa, H., Nandi, S. S., Nanjundan, M., Nanni, M., Napolitano, G., Nardacci, R., Narita, M., Nassif, M., Nathan, I., Natsumeda, M., Naude, R. J., Naumann, C., Naveiras, O., Navid, F., Nawrocki, S. T., Nazarko, T. Y., Nazio, F., Negoita, F., Neill, T., Neisch, A. L., Neri, L. M., Netea, M. G., Neubert, P., Neufeld, T. P., Neumann, D., Neutzner, A., Newton, P. T., Ney, P. A., Nezis, I. P., Ng, C. C. W., Ng, T. B., Nguyen, H. T. T., Nguyen, L. T., Ni, H. -M., Ni Cheallaigh, C., Ni, Z., Nicolao, M. C., Nicoli, F., Nieto-Diaz, M., Nilsson, P., Ning, S., Niranjan, R., Nishimune, H., Niso-Santano, M., Nixon, R. A., Nobili, A., Nobrega, C., Noda, T., Nogueira-Recalde, U., Nolan, T. M., Nombela, I., Novak, I., Novoa, B., Nozawa, T., Nukina, N., Nussbaum-Krammer, C., Nylandsted, J., O'Donovan, T. R., O'Leary, S. M., O'Rourke, E. J., O'Sullivan, M. P., O'Sullivan, T. E., Oddo, S., Oehme, I., Ogawa, M., Ogier-Denis, E., Ogmundsdottir, M. H., Ogretmen, B., Oh, G. T., Oh, S. -H., Oh, Y. J., Ohama, T., Ohashi, Y., Ohmuraya, M., Oikonomou, V., Ojha, R., Okamoto, K., Okazawa, H., Oku, M., Olivan, S., Oliveira, J. M. A., Ollmann, M., Olzmann, J. A., Omari, S., Omary, M. B., Onal, G., Ondrej, M., Ong, S. -B., Ong, S. -G., Onnis, A., Orellana, J. A., Orellana-Munoz, S., Ortega-Villaizan, M. D. M., Ortiz-Gonzalez, X. R., Ortona, E., Osiewacz, H. D., Osman, A. -H. K., Osta, R., Otegui, M. S., Otsu, K., Ott, C., Ottobrini, L., Ou, J. -H. J., Outeiro, T. F., Oynebraten, I., Ozturk, M., Pages, G., Pahari, S., Pajares, M., Pajvani, U. B., Pal, R., Paladino, S., Pallet, N., Palmieri, M., Palmisano, G., Palumbo, C., Pampaloni, F., Pan, L., Pan, Q., Pan, W., Pan, X., Panasyuk, G., Pandey, R., Pandey, U. B., Pandya, V., Paneni, F., Pang, S. Y., Panzarini, E., Papademetrio, D. L., Papaleo, E., Papinski, D., Papp, D., Park, E. C., Park, H. T., Park, J. -M., Park, J. -I., Park, J. T., Park, J., Park, S. C., Park, S. -Y., Parola, A. H., Parys, J. B., Pasquier, A., Pasquier, B., Passos, J. F., Pastore, N., Patel, H. H., Patschan, D., Pattingre, S., Pedraza-Alva, G., Pedraza-Chaverri, J., Pedrozo, Z., Pei, G., Pei, J., Peled-Zehavi, H., Pellegrini, J. M., Pelletier, J., Penalva, M. A., Peng, D., Peng, Y., Penna, F., Pennuto, M., Pentimalli, F., Pereira, C. M. F., Pereira, G. J. S., Pereira, L. C., Pereira de Almeida, L., Perera, N. D., Perez-Lara, A., Perez-Oliva, A. B., Perez-Perez, M. E., Periyasamy, P., Perl, A., Perrotta, C., Perrotta, I., Pestell, R. G., Petersen, M., Petrache, I., Petrovski, G., Pfirrmann, T., Pfister, A. S., Philips, J. A., Pi, H., Picca, A., Pickrell, A. M., Picot, S., Pierantoni, G. M., Pierdominici, M., Pierre, P., Pierrefite-Carle, V., Pierzynowska, K., Pietrocola, F., Pietruczuk, M., Pignata, C., Pimentel-Muinos, F. X., Pinar, M., Pinheiro, R. O., Pinkas-Kramarski, R., Pinton, P., Pircs, K., Piya, S., Pizzo, P., Plantinga, T. S., Platta, H. W., Plaza-Zabala, A., Plomann, M., Plotnikov, E. Y., Plun-Favreau, H., Pluta, R., Pocock, R., Poggeler, S., Pohl, C., Poirot, M., Poletti, A., Ponpuak, M., Popelka, H., Popova, B., Porta, H., Porte Alcon, S., Portilla-Fernandez, E., Post, M., Potts, M. B., Poulton, J., Powers, T., Prahlad, V., Prajsnar, T. K., Pratico, D., Prencipe, R., Priault, M., Proikas-Cezanne, T., Promponas, V. J., Proud, C. G., Puertollano, R., Puglielli, L., Pulinilkunnil, T., Puri, D., Puri, R., Puyal, J., Qi, X., Qi, Y., Qian, W., Qiang, L., Qiu, Y., Quadrilatero, J., Quarleri, J., Raben, N., Rabinowich, H., Ragona, D., Ragusa, M. J., Rahimi, N., Rahmati, M., Raia, V., Raimundo, N., Rajasekaran, N. -S., Ramachandra Rao, S., Rami, A., Ramirez-Pardo, I., Ramsden, D. B., Randow, F., Rangarajan, P. N., Ranieri, D., Rao, H., Rao, L., Rao, R., Rathore, S., Ratnayaka, J. A., Ratovitski, E. A., Ravanan, P., Ravegnini, G., Ray, S. K., Razani, B., Rebecca, V., Reggiori, F., Regnier-Vigouroux, A., Reichert, A. S., Reigada, D., Reiling, J. H., Rein, T., Reipert, S., Rekha, R. S., Ren, H., Ren, J., Ren, W., Renault, T., Renga, G., Reue, K., Rewitz, K., Ribeiro de Andrade Ramos, B., Riazuddin, S. A., Ribeiro-Rodrigues, T. M., Ricci, J. -E., Ricci, R., Riccio, V., Richardson, D. R., Rikihisa, Y., Risbud, M. V., Risueno, R. M., Ritis, K., Rizza, S., Rizzuto, R., Roberts, H. C., Roberts, L. D., Robinson, K. J., Roccheri, M. C., Rocchi, S., Rodney, G. G., Rodrigues, T., Rodrigues Silva, V. R., Rodriguez, A., Rodriguez-Barrueco, R., Rodriguez-Henche, N., Rodriguez-Rocha, H., Roelofs, J., Rogers, R. S., Rogov, V. V., Rojo, A. I., Rolka, K., Romanello, V., Romani, L., Romano, A., Romano, P. S., Romeo-Guitart, D., Romero, L. C., Romero, M., Roney, J. C., Rongo, C., Roperto, S., Rosenfeldt, M. T., Rosenstiel, P., Rosenwald, A. G., Roth, K. A., Roth, L., Roth, S., Rouschop, K. M. A., Roussel, B. D., Roux, S., Rovere-Querini, P., Roy, A., Rozieres, A., Ruano, D., Rubinsztein, D. C., Rubtsova, M. P., Ruckdeschel, K., Ruckenstuhl, C., Rudolf, E., Rudolf, R., Ruggieri, A., Ruparelia, A. A., Rusmini, P., Russell, R. R., Russo, G. L., Russo, M., Russo, R., Ryabaya, O. O., Ryan, K. M., Ryu, K. -Y., Sabater-Arcis, M., Sachdev, U., Sacher, M., Sachse, C., Sadhu, A., Sadoshima, J., Safren, N., Saftig, P., Sagona, A. P., Sahay, G., Sahebkar, A., Sahin, M., Sahin, O., Sahni, S., Saito, N., Saito, S., Saito, T., Sakai, R., Sakai, Y., Sakamaki, J. -I., Saksela, K., Salazar, G., Salazar-Degracia, A., Salekdeh, G. H., Saluja, A. K., Sampaio-Marques, B., Sanchez, M. C., Sanchez-Alcazar, J. A., Sanchez-Vera, V., Sancho-Shimizu, V., Sanderson, J. T., Sandri, M., Santaguida, S., Santambrogio, L., Santana, M. M., Santoni, G., Sanz, A., Sanz, P., Saran, S., Sardiello, M., Sargeant, T. J., Sarin, A., Sarkar, C., Sarkar, S., Sarrias, M. -R., Sarmah, D. T., Sarparanta, J., Sathyanarayan, A., Sathyanarayanan, R., Scaglione, K. M., Scatozza, F., Schaefer, L., Schafer, Z. T., Schaible, U. E., Schapira, A. H. V., Scharl, M., Schatzl, H. M., Schein, C. H., Scheper, W., Scheuring, D., Schiaffino, M. V., Schiappacassi, M., Schindl, R., Schlattner, U., Schmidt, O., Schmitt, R., Schmidt, S. D., Schmitz, I., Schmukler, E., Schneider, A., Schneider, B. E., Schober, R., Schoijet, A. C., Schott, M. B., Schramm, M., Schroder, B., Schuh, K., Schuller, C., Schulze, R. J., Schurmanns, L., Schwamborn, J. C., Schwarten, M., Scialo, F., Sciarretta, S., Scott, M. J., Scotto, K. W., Scovassi, A. I., Scrima, A., Scrivo, A., Sebastian, D., Sebti, S., Sedej, S., Segatori, L., Segev, N., Seglen, P. O., Seiliez, I., Seki, E., Selleck, S. B., Sellke, F. W., Selsby, J. T., Sendtner, M., Senturk, S., Seranova, E., Sergi, C., Serra-Moreno, R., Sesaki, H., Settembre, C., Setty, S. R. G., Sgarbi, G., Sha, O., Shacka, J. J., Shah, J. A., Shang, D., Shao, C., Shao, F., Sharbati, S., Sharkey, L. M., Sharma, D., Sharma, G., Sharma, K., Sharma, P., Sharma, S., Shen, H. -M., Shen, H., Shen, J., Shen, M., Shen, W., Shen, Z., Sheng, R., Sheng, Z., Sheng, Z. -H., Shi, J., Shi, X., Shi, Y. -H., Shiba-Fukushima, K., Shieh, J. -J., Shimada, Y., Shimizu, S., Shimozawa, M., Shintani, T., Shoemaker, C. J., Shojaei, S., Shoji, I., Shravage, B. V., Shridhar, V., Shu, C. -W., Shu, H. -B., Shui, K., Shukla, A. K., Shutt, T. E., Sica, V., Siddiqui, A., Sierra, A., Sierra-Torre, V., Signorelli, S., Sil, P., Silva, B. J. D. A., Silva, J. D., Silva-Pavez, E., Silvente-Poirot, S., Simmonds, R. E., Simon, A. K., Simon, H. -U., Simons, M., Singh, A., Singh, L. P., Singh, R., Singh, S. V., Singh, S. K., Singh, S. B., Singh, S., Singh, S. P., Sinha, D., Sinha, R. A., Sinha, S., Sirko, A., Sirohi, K., Sivridis, E. L., Skendros, P., Skirycz, A., Slaninova, I., Smaili, S. S., Smertenko, A., Smith, M. D., Soenen, S. J., Sohn, E. J., Sok, S. P. M., Solaini, G., Soldati, T., Soleimanpour, S. A., Soler, R. M., Solovchenko, A., Somarelli, J. A., Sonawane, A., Song, F., Song, H. K., Song, J. -X., Song, K., Song, Z., Soria, L. R., Sorice, M., Soukas, A. A., Soukup, S. -F., Sousa, D., Sousa, N., Spagnuolo, P. A., Spector, S. A., Srinivas Bharath, M. M., S, t. Clair D., Stagni, V., Staiano, L., Stalnecker, C. A., Stankov, M. V., Stathopulos, P. B., Stefan, K., Stefan, S. M., Stefanis, L., Steffan, J. S., Steinkasserer, A., Stenmark, H., Sterneckert, J., Stevens, C., Stoka, V., Storch, S., Stork, B., Strappazzon, F., Strohecker, A. M., Stupack, D. G., Su, H., Su, L. -Y., Su, L., Suarez-Fontes, A. M., Subauste, C. S., Subbian, S., Subirada, P. V., Sudhandiran, G., Sue, C. M., Sui, X., Summers, C., Sun, G., Sun, J., Sun, K., Sun, M. -X., Sun, Q., Sun, Y., Sun, Z., Sunahara, K. K. S., Sundberg, E., Susztak, K., Sutovsky, P., Suzuki, H., Sweeney, G., Symons, J. D., Sze, S. C. W., Szewczyk, N. J., Tabecka-Lonczynska, A., Tabolacci, C., Tacke, F., Taegtmeyer, H., Tafani, M., Tagaya, M., Tai, H., Tait, S. W. G., Takahashi, Y., Takats, S., Talwar, P., Tam, C., Tam, S. Y., Tampellini, D., Tamura, A., Tan, C. T., Tan, E. -K., Tan, Y. -Q., Tanaka, M., Tang, D., Tang, J., Tang, T. -S., Tanida, I., Tao, Z., Taouis, M., Tatenhorst, L., Tavernarakis, N., Taylor, A., Taylor, G. A., Taylor, J. M., Tchetina, E., Tee, A. R., Tegeder, I., Teis, D., Teixeira, N., Teixeira-Clerc, F., Tekirdag, K. A., Tencomnao, T., Tenreiro, S., Tepikin, A. V., Testillano, P. S., Tettamanti, G., Tharaux, P. -L., Thedieck, K., Thekkinghat, A. A., Thellung, S., Thinwa, J. W., Thirumalaikumar, V. P., Thomas, S. M., Thomes, P. G., Thorburn, A., Thukral, L., Thum, T., Thumm, M., Tian, L., Tichy, A., Till, A., Timmerman, V., Titorenko, V. I., Todi, S. V., Todorova, K., Toivonen, J. M., Tomaipitinca, L., Tomar, D., Tomas-Zapico, C., Tomic, S., Tong, B. C. -K., Tong, C., Tong, X., Tooze, S. A., Torgersen, M. L., Torii, S., Torres-Lopez, L., Torriglia, A., Towers, C. G., Towns, R., Toyokuni, S., Trajkovic, V., Tramontano, D., Tran, Q. -G., Travassos, L. H., Trelford, C. B., Tremel, S., Trougakos, I. P., Tsao, B. P., Tschan, M. P., Tse, H. -F., Tse, T. F., Tsugawa, H., Tsvetkov, A. S., Tumbarello, D. A., Tumtas, Y., Tunon, M. J., Turcotte, S., Turk, B., Turk, V., Turner, B. J., Tuxworth, R. I., Tyler, J. K., Tyutereva, E. V., Uchiyama, Y., Ugun-Klusek, A., Uhlig, H. H., Ulamek-Koziol, M., Ulasov, I. V., Umekawa, M., Ungermann, C., Unno, R., Urbe, S., Uribe-Carretero, E., Ustun, S., Uversky, V. N., Vaccari, T., Vaccaro, M. I., Vahsen, B. F., Vakifahmetoglu-Norberg, H., Valdor, R., Valente, M. J., Valko, A., Vallee, R. B., Valverde, A. M., Van den Berghe, G., van der Veen, S., Van Kaer, L., van Loosdregt, J., van Wijk, S. J. L., Vandenberghe, W., Vanhorebeek, I., Vannier-Santos, M. A., Vannini, N., Vanrell, M. C., Vantaggiato, C., Varano, G., Varela-Nieto, I., Varga, M., Vasconcelos, M. H., Vats, S., Vavvas, D. G., Vega-Naredo, I., Vega-Rubin-de-Celis, S., Velasco, G., Velazquez, A. P., Vellai, T., Vellenga, E., Velotti, F., Verdier, M., Verginis, P., Vergne, I., Verkade, P., Verma, M., Verstreken, P., Vervliet, T., Vervoorts, J., Vessoni, A. T., Victor, V. M., Vidal, M., Vidoni, C., Vieira, O. V., Vierstra, R. D., Vigano, S., Vihinen, H., Vijayan, V., Vila, M., Vilar, M., Villalba, J. M., Villalobo, A., Villarejo-Zori, B., Villarroya, F., Villarroya, J., Vincent, O., Vindis, C., Viret, C., Viscomi, M. T., Visnjic, D., Vitale, I., Vocadlo, D. J., Voitsekhovskaja, O. V., Volonte, C., Volta, M., Vomero, M., Von Haefen, C., Vooijs, M. A., Voos, W., Vucicevic, L., Wade-Martins, R., Waguri, S., Waite, K. A., Wakatsuki, S., Walker, D. W., Walker, M. J., Walker, S. A., Walter, J., Wandosell, F. G., Wang, B., Wang, C. -Y., Wang, C., Wang, D., Wang, F., Wang, G., Wang, H., Wang, H. -G., Wang, J., Wang, K., Wang, L., Wang, M. H., Wang, M., Wang, N., Wang, P., Wang, Q. J., Wang, Q., Wang, Q. K., Wang, Q. A., Wang, W. -T., Wang, W., Wang, X., Wang, Y., Wang, Y. -Y., Wang, Z., Warnes, G., Warnsmann, V., Watada, H., Watanabe, E., Watchon, M., Wawrzynska, A., Weaver, T. E., Wegrzyn, G., Wehman, A. M., Wei, H., Wei, L., Wei, T., Wei, Y., Weiergraber, O. H., Weihl, C. C., Weindl, G., Weiskirchen, R., Wells, A., Wen, R. H., Wen, X., Werner, A., Weykopf, B., Wheatley, S. P., Whitton, J. L., Whitworth, A. J., Wiktorska, K., Wildenberg, M. E., Wileman, T., Wilkinson, S., Willbold, D., Williams, B., Williams, R. S. B., Williams, R. L., Williamson, P. R., Wilson, R. A., Winner, B., Winsor, N. J., Witkin, S. S., Wodrich, H., Woehlbier, U., Wollert, T., Wong, E., Wong, J. H., Wong, R. W., Wong, V. K. W., Wong, W. W. -L., Wu, A. -G., Wu, C., Wu, J., Wu, K. K., Wu, M., Wu, S. -Y., Wu, S., Wu, W. K. K., Wu, X., Wu, Y. -W., Wu, Y., Xavier, R. J., Xia, H., Xia, L., Xia, Z., Xiang, G., Xiang, J., Xiang, M., Xiang, W., Xiao, B., Xiao, G., Xiao, H., Xiao, H. -T., Xiao, J., Xiao, L., Xiao, S., Xiao, Y., Xie, B., Xie, C. -M., Xie, M., Xie, Y., Xie, Z., Xilouri, M., Xu, C., Xu, E., Xu, H., Xu, J., Xu, L., Xu, W. W., Xu, X., Xue, Y., Yakhine-Diop, S. M. S., Yamaguchi, M., Yamaguchi, O., Yamamoto, A., Yamashina, S., Yan, S., Yan, S. -J., Yan, Z., Yanagi, Y., Yang, C., Yang, D. -S., Yang, H., Yang, H. -T., Yang, J. -M., Yang, J., Yang, L., Yang, M., Yang, P. -M., Yang, Q., Yang, S., Yang, S. -F., Yang, W., Yang, W. Y., Yang, X., Yang, Y., Yao, H., Yao, S., Yao, X., Yao, Y. -G., Yao, Y. -M., Yasui, T., Yazdankhah, M., Yen, P. M., Yi, C., Yin, X. -M., Yin, Y., Yin, Z., Ying, M., Ying, Z., Yip, C. K., Yiu, S. P. T., Yoo, Y. H., Yoshida, K., Yoshii, S. R., Yoshimori, T., Yousefi, B., Yu, B., Yu, H., Yu, J., Yu, L., Yu, M. -L., Yu, S. -W., Yu, V. C., Yu, W. H., Yu, Z., Yuan, J., Yuan, L. -Q., Yuan, S., Yuan, S. -S. F., Yuan, Y., Yuan, Z., Yue, J., Yue, Z., Yun, J., Yung, R. L., Zacks, D. N., Zaffagnini, G., Zambelli, V. O., Zanella, I., Zang, Q. S., Zanivan, S., Zappavigna, S., Zaragoza, P., Zarbalis, K. S., Zarebkohan, A., Zarrouk, A., Zeitlin, S. O., Zeng, J., Zeng, J. -D., Zerovnik, E., Zhan, L., Zhang, B., Zhang, D. D., Zhang, H., Zhang, H. -L., Zhang, J., Zhang, J. -P., Zhang, K. Y. B., Zhang, L. W., Zhang, L., Zhang, M., Zhang, P., Zhang, S., Zhang, W., Zhang, X., Zhang, X. -W., Zhang, X. D., Zhang, Y., Zhang, Y. -D., Zhang, Y. -Y., Zhang, Z., Zhao, H., Zhao, L., Zhao, S., Zhao, T., Zhao, X. -F., Zhao, Y., Zheng, G., Zheng, K., Zheng, L., Zheng, S., Zheng, X. -L., Zheng, Y., Zheng, Z. -G., Zhivotovsky, B., Zhong, Q., Zhou, A., Zhou, B., Zhou, C., Zhou, G., Zhou, H., Zhou, J., Zhou, K., Zhou, R., Zhou, X. -J., Zhou, Y., Zhou, Z. -Y., Zhou, Z., Zhu, B., Zhu, C., Zhu, G. -Q., Zhu, H., Zhu, W. -G., Zhu, Y., Zhuang, H., Zhuang, X., Zientara-Rytter, K., Zimmermann, C. M., Ziviani, E., Zoladek, T., Zong, W. -X., Zorov, D. B., Zorzano, A., Zou, W., Zou, Z., Zuryn, S., Zwerschke, W., Brand-Saberi, B., Dong, X. C., Kenchappa, C. S., Lin, Y., Oshima, S., Rong, Y., Sluimer, J. C., Stallings, C. L., Tong, C. -K., and Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Programmed cell death ,Settore BIO/06 ,Autophagosome ,Autolysosome ,[SDV]Life Sciences [q-bio] ,lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4] ,Autophagy-Related Proteins ,Review ,Computational biology ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,Settore MED/04 ,03 medical and health sciences ,stress ,Chaperone-mediated autophagy ,ddc:570 ,Autophagy ,LC3 ,Animals ,Humans ,cancer ,Settore BIO/10 ,flux ,lysosome ,macroautophagy ,neurodegeneration ,phagophore ,vacuole ,Set (psychology) ,Molecular Biology ,030102 biochemistry & molecular biology ,business.industry ,Interpretation (philosophy) ,Autophagosomes ,Cell Biology ,Multicellular organism ,030104 developmental biology ,Knowledge base ,Biological Assay ,Lysosomes ,business ,Biomarkers ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- Published
- 2021
- Full Text
- View/download PDF
9. DNA Identification and Diversity of the Vector Mosquitoes Culex pipiens s.s. and Culex torrentium in Belgium (Diptera: Culicidae)
- Author
-
Ann Vanderheyden, Nathalie Smitz, Katrien De Wolf, Isra Deblauwe, Wouter Dekoninck, Kenny Meganck, Sophie Gombeer, Adwine Vanslembrouck, Jacobus De Witte, Anna Schneider, Ingrid Verlé, Marc De Meyer, Thierry Backeljau, Ruth Müller, and Wim Van Bortel
- Subjects
Chemistry ,Ecology ,Ecological Modeling ,parasitic diseases ,entomology ,Agricultural and Biological Sciences (miscellaneous) ,Biology ,Nature and Landscape Conservation ,Culex pipiens biotypes pipiens/molestus ,hybrids ,disease vectors ,DNA-based identification ,cytochrome c oxidase I (COI) ,fragment-size analyses (ACE2; CQ11) - Abstract
This survey reports on the DNA identification and occurrence of Culex torrentium and Cx. pipiens s.s. in Belgium. These native disease-vector mosquito species are morphologically difficult to separate, and the biotypes of Cx. pipiens s.s. are morphologically indistinguishable. Culex torrentium and Cx. pipiens s.s. were identified using the COI and ACE2 loci. We recorded 1248 Cx. pipiens s.s. and 401 Cx. torrentium specimens from 24 locations in Belgium (collected between 2017 and 2019). Culex pipiens biotypes pipiens and molestus, and their hybrids, were differentiated using fragment-size analysis of the CQ11 locus (956 pipiens and 227 molestus biotype specimens, 29 hybrids). Hybrids were observed at 13 out of 16 sympatric sites. These results confirm that both species are widespread in Belgium, but while Cx. torrentium revealed many COI haplotypes, Cx. pipiens s.s. showed only one abundant haplotype. This latter observation may either reflect a recent population-wide demographic or range expansion, or a recent bottleneck, possibly linked to a Wolbachia infection. Finally, new evidence is provided for the asymmetric but limited introgression of the molestus biotype into the pipiens biotype.
- Published
- 2022
- Full Text
- View/download PDF
10. MEMO: Monitoring of Exotic MOsquitoes in Belgium
- Author
-
Isra Deblauwe, Dimitri Brosens, Katrien De Wolf, Nathalie Smitz, Adwine Vanslembrouck, Anna Schneider, Jacobus De Witte, Ingrid Verlé, Wouter Dekoninck, Marc De Meyer, Thierry Backeljau, Sophie Gombeer, Kenny Meganck, Ann Vanderheyden, Ruth Müller, and Wim Van Bortel
- Subjects
Occurrence, Culicidae, vector disease, mosquito, Eco-climatic changes, taxonomy, spatial distribution models, population genetics, ecology of invasive species ,Applied Mathematics ,General Mathematics ,Biology - Abstract
MEMO - Monitoring of Exotic MOsquitoes in Belgium is a sampling event dataset published by the Institute of Tropical Medicine in Antwerp (Belgium) (ITM). It is part of the early detection of exotic mosquito species (EMS) along high-risk introduction routes in Belgium, in which data are collected at defined locations (i.e. Points of Entry or PoE’s) using a standardised protocol. The MEMO dataset contains mosquito sampling counts performed between 2017 and 2020, and the MEMO+2020, an extension of the MEMO dataset, contains only Aedes albopictus mosquito trap counts performed in 2020. Here, they are published as a standardised Darwin Core Archive, which includes for each sampling event an eventID, a date, a location and a sampling protocol (in the event core); and an occurrenceID for each occurrence (tube), the number of collected individuals per tube, species status (present/absent), information on the identification and scientific name (in the occurrence extension). Issues with the dataset can be reported at https://github.com/BelgianBiodiversityPlatform/data-publication-ITG/issues
- Published
- 2022
- Full Text
- View/download PDF
11. Effects of male lure dispensers and trap types for monitoring of Ceratitis capitata and Bactrocera dorsalis ( <scp>Diptera</scp> : <scp>Tephritidae</scp> )
- Author
-
Claire N. Love, Marc De Meyer, Rooikie Beck, Martin J Gilbert, Aruna Manrakhan, J.-H. Daneel, and Massimiliano Virgilio
- Subjects
Male ,biology ,Tephritidae ,Monitoring system ,Ceratitis capitata ,General Medicine ,Trap (plumbing) ,biology.organism_classification ,Insect Control ,Bactrocera dorsalis ,Pheromones ,South Africa ,Horticulture ,chemistry.chemical_compound ,Methyl eugenol ,chemistry ,Insect Science ,Capitata ,Animals ,PEST analysis ,Agronomy and Crop Science - Abstract
Background Attractant-based trapping is used in the establishment of pest-free areas and areas of low pest prevalence for fruit flies (Diptera: Tephritidae). Male lures are commonly used attractants in fruit fly trapping. In this study, the effects of male lure dispensers, traps and combinations of dispensers and traps on monitoring of two fruit fly pests, Ceratitis capitata (Wiedemann) and Bactrocera dorsalis (Hendel), were investigated in South Africa. Results In the male-lure-based trapping systems evaluated, trimedlure (TML) for C. capitata and methyl eugenol (ME) for B. dorsalis, the type of dispenser affected catches for both species. Higher catches of B. dorsalis males were recorded in bucket traps baited with a dispenser containing 15 g ME compared with traps baited with dispensers containing either 4 g ME or 2 g ME. Catches of C. capitata males were higher with dispensers containing TML than those with TML plus extender (Capilure®). The type of trap used with TML also influenced catches of C. capitata with higher numbers recorded in yellow Delta trap compared with the Sensus bucket trap. Conclusions Dispensers with higher ME loadings are more effective for monitoring of B. dorsalis. The yellow Delta trap baited with TML (without extender) would be an effective monitoring system for C. capitata. Fruit fly prevalence levels as determined by specific trapping systems should be related to their efficiency in terms of catches of the target pests. © 2020 Society of Chemical Industry.
- Published
- 2021
- Full Text
- View/download PDF
12. Taxonomic revision of the Afrotropical hover fly genus Senaspis Macquart (Diptera, Syrphidae)
- Author
-
Georg Goergen, Kurt Jordaens, and Marc De Meyer
- Subjects
0106 biological sciences ,0301 basic medicine ,Insecta ,flower fly ,Arthropoda ,Identification key ,Zoology ,Morphology (biology) ,010603 evolutionary biology ,01 natural sciences ,DNA barcoding ,03 medical and health sciences ,Genus ,lcsh:Zoology ,Animalia ,lcsh:QL1-991 ,Syrphidae ,Senaspis ,Ecology, Evolution, Behavior and Systematics ,Taxonomy ,biology ,Diptera ,Eristalinae ,biology.organism_classification ,030104 developmental biology ,Africa ,Animal Science and Zoology ,Research Article - Abstract
The representatives of the Afrotropical hover fly genusSenaspisMacquart (Diptera) are revised. In total, ten species are recognized.Senaspis apophysata(Bezzi) is herewith placed as junior synonym ofS. flavicepsMacquart,S. livida(Bezzi) is herewith placed as junior synonym ofS. dentipes(Macquart) andS. griseifacies(Bezzi) is herewith placed as junior synonym ofS. haemorrhoa(Gerstaecker). All species are redescribed and an identification key is provided. DNA barcoding analysis (7 species, 64 barcodes) showed that the technique can be used to unambiguously identify the species. The relationships among the differentSenaspisspecies are discussed based on morphological and DNA data.
- Published
- 2020
13. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae , increase host susceptibility by manipulating secondary metabolite content of rice
- Author
-
Kris Morreel, Tim De Meyer, Hannes Lefevere, Tina Kyndt, Wout Boerjan, Godelieve Gheysen, and Lander Bauters
- Subjects
0106 biological sciences ,0301 basic medicine ,Hydrolases ,chorismate mutase ,Potato cyst nematode ,Plant Science ,01 natural sciences ,CRYSTAL-STRUCTURE ,Plant Immunity ,POTATO CYST-NEMATODE ,biology ,Effector ,food and beverages ,Helminth Proteins ,Hirschmanniella oryzae ,Plants, Genetically Modified ,defense ,Metabolome ,Chorismate mutase ,Original Article ,medicine.drug ,isochorismatase ,DEFENSE ,nematode ,Soil Science ,Oryza sativa ,Secondary metabolite ,Host-Parasite Interactions ,Microbiology ,ROOT-LESION NEMATODE ,03 medical and health sciences ,medicine ,Animals ,Tylenchoidea ,GLOBODERA-ROSTOCHIENSIS ,TRANSCRIPTOME ,Molecular Biology ,Plant Diseases ,PHYTOALEXINS ,Biology and Life Sciences ,Oryza ,Original Articles ,biology.organism_classification ,GENE ,Genetically modified rice ,030104 developmental biology ,Nematode ,DIFFERENTIAL EXPRESSION ANALYSIS ,Transcriptome ,Agronomy and Crop Science ,RESISTANCE ,010606 plant biology & botany - Abstract
Hirschmanniella oryzae is one of the most devastating nematodes on rice, leading to substantial yield losses. Effector proteins aid the nematode during the infection process by subduing plant defence responses. In this research we characterized two potential H. oryzae effector proteins, chorismate mutase (HoCM) and isochorismatase (HoICM), and investigated their enzymatic activity and their role in plant immunity. Both HoCM and HoICM proved to be enzymatically active in complementation tests in mutant Escherichia coli strains. Infection success by the migratory nematode H. oryzae was significantly higher in transgenic rice lines constitutively expressing HoCM or HoICM. Expression of HoCM, but not HoICM, increased rice susceptibility against the sedentary nematode Meloidogyne graminicola also. Transcriptome and metabolome analyses indicated reductions in secondary metabolites in the transgenic rice plants expressing the potential nematode effectors. The results presented here demonstrate that both HoCM and HoICM suppress the host immune system and that this may be accomplished by lowering secondary metabolite levels in the plant., Chorismate mutase and isochorismatase from the plant parasitic nematode Hirschmanniella oryzae are able to decrease immunity of rice by interfering with the phenylpropanoid pathway.
- Published
- 2020
- Full Text
- View/download PDF
14. From yellow to silver: Transforming cranial morphology in European eel (Anguilla anguilla)
- Author
-
Dominique Adriaens, Barbara De Kegel, Jens De Meyer, and Jochem Baan
- Subjects
Male ,0301 basic medicine ,Cranial morphology ,endocrine system ,animal structures ,Histology ,Zoology ,Musculoskeletal anatomy ,Bite Force ,03 medical and health sciences ,0302 clinical medicine ,medicine ,Animals ,Sexual maturity ,Maturation process ,Muscle, Skeletal ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics ,biology ,Skull ,Silvering ,X-Ray Microtomography ,Cell Biology ,Anguilla ,Silver eel ,biology.organism_classification ,Original Papers ,Jaw muscle ,030104 developmental biology ,medicine.anatomical_structure ,Anatomy ,030217 neurology & neurosurgery ,Developmental Biology - Abstract
The European eel (Anguilla anguilla) has been extensively studied, especially because of its highly specialized migratory behaviour associated with substantial phenotypic transformations. During this migration, one of those transformations the eel undergoes is from yellow to silver eel, a process known as silvering. Although the cranial morphology during the earlier glass, elver and yellow eel stages are well studied, little is known about actual morphological changes during the transformation process from the yellow to the silver eel stage. Yet, literature suggests drastic changes in musculoskeletal anatomy. Here, we investigated the cranial musculoskeletal morphology of 11 male European eels at different stages during silvering, resulting both from natural and artificial maturation. Using 3D-reconstructed µCT data of the head, the skull and cranial muscles associated with jaw closing and respiration were studied. Eye size was used as a proxy for the silvering stage. Size-adjusted jaw muscle volumes increased during silvering, although insignificantly. Accordingly, a near-significant increase in bite force was observed. Respiratory muscles size did increase significantly during silvering, however. Considering the eel's long migration, which often includes deep and thus potentially oxygen-poor environments, having a better performing respiratory system may facilitate efficient migration. Both overall skull dimensions and specifically orbit size increased with eye index, suggesting they play a role in accommodating the enlarging eyes during silvering. Finally, artificially matured eels had a wider and taller skull, as well as larger jaw muscles than wild silver eels. This could be caused (a) by different conditions experienced during the yellow eel stage, which are maintained in the silver eel stage, (b) by side effects of hormonal injections or (c) be part of the maturation process as artificially induced silver eels had a higher eye index than the wild silver eels.
- Published
- 2020
- Full Text
- View/download PDF
15. Defective autophagy in vascular smooth muscle cells increases passive stiffness of the mouse aortic vessel wall
- Author
-
Arthur J. A. Leloup, Wim Martinet, Dorien G. De Munck, Guido R.Y. De Meyer, and Paul Fransen
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Vascular smooth muscle ,Physiology ,Myocytes, Smooth Muscle ,Clinical Biochemistry ,Muscle, Smooth, Vascular ,Nitric oxide ,Mice ,03 medical and health sciences ,chemistry.chemical_compound ,Vascular Stiffness ,0302 clinical medicine ,Physiology (medical) ,medicine.artery ,Internal medicine ,Autophagy ,medicine ,Animals ,Arterial Pressure ,Receptor ,Aorta ,Cells, Cultured ,biology ,Chemistry ,Endothelial Cells ,medicine.disease ,Mice, Inbred C57BL ,Compliance (physiology) ,030104 developmental biology ,Endocrinology ,cardiovascular system ,Arterial stiffness ,biology.protein ,Human medicine ,Elastin ,030217 neurology & neurosurgery - Abstract
Aging and associated progressive arterial stiffening are both important predictors for the development of cardiovascular diseases. Recent evidence showed that autophagy, a catabolic cellular mechanism responsible for nutrient recycling, plays a major role in the physiology of vascular cells such as endothelial cells and vascular smooth muscle cells (VSMCs). Moreover, several autophagy inducing compounds are effective in treating arterial stiffness. Yet, a direct link between VSMC autophagy and arterial stiffness remains largely unidentified. Therefore, we investigated the effects of a VSMC-specific deletion of the essential autophagy-related gene Atg7 in young mice (3.5 months) (Atg7F/F SM22α-Cre+ mice) on the biomechanical properties of the aorta, using an in-house developed Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC). Aortic segments of Atg7F/F SM22α-Cre+ mice displayed attenuated compliance and higher arterial stiffness, which was more evident at higher distention pressures. Passive aortic wall remodeling, rather than differences in VSMC tone, is responsible for these phenomena, since differences in compliance and stiffness between Atg7+/+ SM22α-Cre+ and Atg7F/F SM22α-Cre+ aortas were more pronounced when VSMCs were completely relaxed by the addition of exogenous nitric oxide. These observations are supported by histological data showing a 13% increase in medial wall thickness and a 14% decrease in elastin along with elevated elastin fragmentation. In addition, expression of the calcium-binding protein S100A4, which is linked to matrix remodeling, was elevated in aortic segments of Atg7F/F SM22α-Cre+ mice. Overall, these findings illustrate that autophagy exerts a crucial role in defining arterial wall compliance.
- Published
- 2020
- Full Text
- View/download PDF
16. Fine-scale infestation pattern of Bactrocera dorsalis (Diptera: Tephritidae) in a mango orchard in Central Mozambique
- Author
-
Lourenço Manuel, L. Canhanga, Luis Bota, Braine Fabião, Maulid Mwatawala, Marc De Meyer, D. Cugala, and Massimiliano Virgilio
- Subjects
0106 biological sciences ,Integrated pest management ,biology ,business.industry ,Pest control ,Pesticide ,biology.organism_classification ,medicine.disease_cause ,010603 evolutionary biology ,01 natural sciences ,Bactrocera dorsalis ,Spatial heterogeneity ,Toxicology ,010602 entomology ,Insect Science ,Tephritidae ,Infestation ,medicine ,Orchard ,business ,Ecology, Evolution, Behavior and Systematics - Abstract
The production of mango in Mozambique is under threat due to fruit fly infestation, and most of the farmers cannot afford the cost of control. Spatio-temporal dynamic of Bactrocera dorsalis was assessed at farm level in Manica Province to provide information for better calibration of pest management strategies and thereby minimize the use of pesticides and other costs associated to pest control. 64 Chempac Bucket traps baited with torula yeast were monitored weekly at a 10 ha mango orchard. From the species captured on the traps only B. dorsalis were considered for the study due to its importance on mango. A universal spatio-temporal kriging model was fitted to investigate the spatio-temporal pattern of the fly. Results of the analysis showed high spatial heterogeneity of the fly over time, with the occurrence spreading from the margins of the mango orchard and infesting the whole orchard during the period of peak of abundances reaching densities of more than 500 fly per trap per week. These results shows that the flies that infest this particular orchard may come from the marginal area, especially from local varieties which get matured earlier. The findings of this study provides information to be taken into consideration by farmers about when and where apply the control measures.
- Published
- 2020
- Full Text
- View/download PDF
17. Seed-produced anti-globulin VHH-Fc antibodies retrieve globulin precursors in the insoluble fraction and modulate the Arabidopsis thaliana seed subcellular morphology
- Author
-
Jonah Nolf, Eva Stoger, Anna Depicker, Friedrich Altmann, Katrien Maleux, Stanislav Melnik, Elsa Arcalis, and Thomas De Meyer
- Subjects
EXPRESSION ,0106 biological sciences ,0301 basic medicine ,Seed storage protein ,Globulin ,Russell-like bodies ,Protein storage vacuole ,Arabidopsis ,Plant Science ,01 natural sciences ,Antibodies ,NICOTIANA-BENTHAMIANA ,ENHANCES TOLERANCE ,03 medical and health sciences ,Antigen ,Genetics ,Storage protein ,Arabidopsis thaliana ,TOBACCO PLANTS ,chemistry.chemical_classification ,FUSARIUM-SPECIFIC ANTIBODY ,biology ,Seed Storage Proteins ,Wild type ,Biology and Life Sciences ,IMMUNOMODULATION ,food and beverages ,STORAGE PROTEINS ,Globulins ,IN-VITRO ,General Medicine ,Plants, Genetically Modified ,biology.organism_classification ,Molecular farming ,Amino acid ,CHAIN FV-ANTIBODY ,030104 developmental biology ,Biochemistry ,chemistry ,Vacuoles ,biology.protein ,VIRUS ,Antibody ,VHH-Fc fusions ,Agronomy and Crop Science ,010606 plant biology & botany - Abstract
Key message Nanobody-heavy chain (VHH-Fc) antibody formats have the potential to immunomodulate even highly accumulating proteins and provide a valuable tool to experimentally modulate the subcellular distribution of seed storage proteins. Recombinant antibodies often obtain high accumulation levels in plants, and thus, besides being the actual end-product, antibodies targeting endogenous host proteins can be used to interfere with the localization and functioning of their corresponding antigens. Here, we compared the effect of a seed-expressed nanobody-heavy chain (VHH-Fc) antibody against the highly abundant Arabidopsis thaliana globulin seed storage protein cruciferin with that of a VHH-Fc antibody without endogenous target. Both antibodies reached high accumulation levels of around 10% of total soluble protein, but strikingly, another significant part was present in the insoluble protein fraction and was recovered only after extraction under denaturing conditions. In seeds containing the anti-cruciferin antibodies but not the antibody without endogenous target, the amount of soluble, processed globulin subunits was severely reduced and a major part of the cruciferin molecules was found as precursor in the insoluble fraction. Moreover, in these seeds, aberrant vacuolar phenotypes were observed that were different from the effects caused by the depletion of globulins in knock-out seeds. Remarkably, the seeds with strongly reduced globulin amounts are fully viable and germinate with frequencies similar to wild type, illustrating how flexible seeds can retrieve amino acids from the stored proteins to start germination.
- Published
- 2020
- Full Text
- View/download PDF
18. Genome‐wide DNA hypomethylation shapes nematode pattern‐triggered immunity in plants
- Author
-
Tina Kyndt, Tim De Meyer, Bruno Verstraeten, and Mohammad Reza Atighi
- Subjects
0106 biological sciences ,0301 basic medicine ,Transposable element ,pattern‐triggered immunity ,Meloidogyne graminicola ,Physiology ,Bisulfite sequencing ,Oryza sativa ,Plant Science ,Biology ,01 natural sciences ,DEMETHYLATION ,SMALL RNAS ,03 medical and health sciences ,Solanum lycopersicum ,DNA hypomethylation ,Animals ,Tylenchoidea ,Epigenetics ,EPIGENETIC REGULATION ,RdDM ,Genetics ,Regulation of gene expression ,Full Paper ,Research ,rice ,basal defence ,METHYLATION ,Biology and Life Sciences ,food and beverages ,Oryza ,Promoter ,DNA ,Methylation ,Full Papers ,DNA Methylation ,ARABIDOPSIS ,FUNCTIONAL-ROLE ,030104 developmental biology ,ROOT-KNOT ,nematodes ,DNA methylation ,TRANSPOSABLE ELEMENTS ,RESISTANCE ,MELOIDOGYNE-GRAMINICOLA ,010606 plant biology & botany - Abstract
Summary A role for DNA hypomethylation has recently been suggested in the interaction between bacteria and plants; it is unclear whether this phenomenon reflects a conserved response.Treatment of plants of monocot rice and dicot tomato with nematode‐associated molecular patterns from different nematode species or bacterial pathogen‐associated molecular pattern flg22 revealed global DNA hypomethylation. A similar hypomethylation response was observed during early gall induction by Meloidogyne graminicola in rice. Evidence for the causal impact of hypomethylation on immunity was revealed by a significantly reduced plant susceptibility upon treatment with DNA methylation inhibitor 5‐azacytidine.Whole‐genome bisulphite sequencing of young galls revealed massive hypomethylation in the CHH context, while not for CG or CHG nucleotide contexts. Further, CHH hypomethylated regions were predominantly associated with gene promoter regions, which was not correlated with activated gene expression at the same time point but, rather, was correlated with a delayed transcriptional gene activation. Finally, the relevance of CHH hypomethylation in plant defence was confirmed in rice mutants of the RNA‐directed DNA methylation pathway and DECREASED DNA METHYLATION 1.We demonstrated that DNA hypomethylation is associated with reduced susceptibility in rice towards root‐parasitic nematodes and is likely to be part of the basal pattern‐triggered immunity response in plants.
- Published
- 2020
- Full Text
- View/download PDF
19. Eliminating Hepatitis C Virus From a Prevalent Kidney Transplant Recipient Population: A Single-Center Study in Belgium in the Direct-Acting Antivirals Era
- Author
-
Martine De Meyer, Benoit Kabamba, Michel Jadoul, Bénédicte Delire, Michel Mourad, Nada Kanaan, Jeffrey V. Lazarus, Jean-François Cambier, Eric Goffin, Arnaud Devresse, Antoine Buemi, Tom Darius, UCL - SSS/IREC/NEFR - Pôle de Néphrologie, UCL - (SLuc) Service de néphrologie, UCL - (SLuc) Service de gastro-entérologie, UCL - SSS/IREC/MBLG - Pôle de Microbiologie médicale, UCL - (SLuc) Service de microbiologie, UCL - SSS/IREC/CHEX - Pôle de chirgurgie expérimentale et transplantation, and UCL - (SLuc) Service de chirurgie et transplantation abdominale
- Subjects
Adult ,Male ,medicine.medical_specialty ,Sustained Virologic Response ,Hepatitis C virus ,Hepacivirus ,Population ,medicine.disease_cause ,Single Center ,Antiviral Agents ,Cohort Studies ,Postoperative Complications ,Belgium ,Internal medicine ,Prevalence ,medicine ,Humans ,Viremia ,Medicaments antivírics ,education ,Kidney transplantation ,Retrospective Studies ,Transplantation ,education.field_of_study ,biology ,business.industry ,Retrospective cohort study ,Middle Aged ,biology.organism_classification ,medicine.disease ,Hepatitis C ,Kidney Transplantation ,Antiviral agents ,Treatment Outcome ,Cohort ,Female ,Surgery ,business ,Cohort study - Abstract
Background: Direct-acting antivirals (DAAs) have revolutionized the treatment of hepatitis C virus (HCV) infection. Although previous studies have reported positive results with DAAs after kidney transplantation (KT), their impact on the prevalence of HCV viremia (HCVv) in prevalent kidney transplant recipients (KTRs) remains ill defined. Methods: We retrospectively reviewed the HCV status of all patients followed at Cliniques Universitaires Saint-Luc, Brussels, Belgium, outpatient KT clinic between January 2014 and December 2018. We collected the clinical features of KTRs treated with DAAs during this period and calculated the annual prevalence of HCVv over this period. Results: Out of 1451 KTRs, 22 (1.52%) had HCVv in 2014 to 2018. From 2014 to 2018, the annual prevalence of HCVv dropped from 1.97% to 0.43%, (P < .001). Fourteen KTRs were treated with DAAs a median of 197 months (range: 5-374) after KT, mostly (79%) in 2017 after reimbursement restrictions of DAAs for KTRs in Belgium were removed. DAA treatment was safe with a sustained virological response rate at 12 weeks after treatment (SVR12) of 93%. Two patients died 14 months (lymphoma, despite SVR12) and 7 months (hepatocarcinoma, no SVR12) after DAAs initiation, respectively. Among HCVv KTRs not treated with DAAs (n = 8), 2 lost their graft, 5 died, and 1 is initiating therapy. The current prevalence of HCVv in the cohort is 0.08%, with a single patient currently on treatment. Conclusion: Treatment with DAAs led to a dramatic decrease of HCVv prevalence in this KTR cohort. DAA use was safe and effective. Elimination of HCV is possible at KT clinics.
- Published
- 2020
- Full Text
- View/download PDF
20. Saving the European Eel: How Morphological Research Can Help in Effective Conservation Management
- Author
-
Dominique Adriaens, Jens De Meyer, and Pieterjan Verhelst
- Subjects
0106 biological sciences ,Conservation of Natural Resources ,Biotic component ,biology ,Overfishing ,010604 marine biology & hydrobiology ,Ecology (disciplines) ,Population Dynamics ,Fisheries ,Plant Science ,Anguilla ,Silver eel ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,Fishery ,Critically endangered ,Habitat destruction ,Functional morphology ,Animals ,Animal Science and Zoology ,Escapement - Abstract
The European eel (Anguilla anguilla) is a critically endangered species, whose recruitment stocks have declined to nearly 1% compared to the late 70s. An amalgam of factors is responsible for this, among them migration barriers, pollution, habitat loss, parasite infection, and overfishing. A lot of recent studies focus on aspects that can increase the mature silver eel escapement rate, such as identifying migration barriers and developing passageways or addressing the impact of pollution on the eel’s health. However, little attention is given to the eel’s morphology in function of management measures. Worryingly, less than 50% of the currently installed management plans reach their goals, strongly indicating that more information is needed about the eel’s ecology and behavior. Functional morphological studies provide insights on how species perform behaviors crucial for survival, such as feeding and locomotion, but also in how environmental changes can affect or limit such behaviors. Consequently, functional morphology represents an important biotic component that should be taken into account when making conservation decisions. Hence, here, we provide an overview of studies on the eel’s morphology that do not only demonstrate its relation with ecology and behavior, but also provide information for developing and installing proper and more specific management measures.
- Published
- 2020
- Full Text
- View/download PDF
21. The von Willebrand Factor A1 domain mediates thromboinflammation, aggravating ischemic stroke outcome in mice
- Author
-
Cécile V. Denis, Hans Deckmyn, Frederik Denorme, Simon F. De Meyer, Kimberly Martinod, Peter J. Lenting, Aline Vandenbulcke, Karen Vanhoorelbeke, Laboratory for Thrombosis Research [Kortrijk, Belgium], KU Leuven Campus Kulak Kortrijk [Belgium], Hémostase, Inflammation, Thrombose (HITH - U1176 Inserm - CHU Bicêtre), Université Paris-Sud - Paris 11 (UP11)-AP-HP Hôpital Bicêtre (Le Kremlin-Bicêtre)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Denis, Cécile
- Subjects
[SDV.MHEP.HEM] Life Sciences [q-bio]/Human health and pathology/Hematology ,Platelets ,medicine.medical_specialty ,Ischemia ,Brain damage ,030204 cardiovascular system & hematology ,Article ,Brain Ischemia ,Microcirculation ,Proinflammatory cytokine ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Von Willebrand factor ,Arterial Thrombosis ,White blood cell ,Internal medicine ,von Willebrand Factor ,medicine ,Animals ,Stroke ,Ischemic Stroke ,Inflammation ,Ischemic stroke ,biology ,business.industry ,[SDV.MHEP.HEM]Life Sciences [q-bio]/Human health and pathology/Hematology ,Thrombosis ,Hematology ,medicine.disease ,3. Good health ,Mice, Inbred C57BL ,Endocrinology ,medicine.anatomical_structure ,thromboinflammation ,biology.protein ,medicine.symptom ,business ,Reperfusion injury ,030217 neurology & neurosurgery - Abstract
von Willebrand factor (VWF) plays an important role in ischemic stroke. However, the exact mechanism by which VWF mediates progression of ischemic stroke brain damage is not completely understood. Using flow cytometric analysis of single cell suspensions prepared from brain tissue and immunohistochemistry, we investigated the potential inflammatory mechanisms by which VWF contributes to ischemic stroke brain damage in a mouse model of cerebral ischemia/reperfusion injury. Twenty-four hours after stroke, flow cytometric analysis of brain tissue revealed that overall white blood cell recruitment in the ipsilesional brain hemisphere of VWF KO mice was 2 times lower than WT mice. More detailed analysis showed a specific reduction of proinflammatory monocytes, neutrophils and T-cells in the ischemic brain of VWF KO mice compared to WT mice. Interestingly, histological analysis revealed a substantial number of neutrophils and T-cells still within the microcirculation of the stroke brain, potentially contributing to the no-reflow phenomenon. Specific therapeutic targeting of the VWF A1 domain in WT mice resulted in reduced immune cell numbers in the affected brain and protected mice from ischemic stroke brain damage. More specifically, recruitment of proinflammatory monocytes was reduced two-fold, neutrophil recruitment was reduced five-fold and T-cell recruitment was reduced two-fold in mice treated with a VWF A1-targeting nanobody compared to mice receiving a control nanobody. In conclusion, our data identify a potential role for VWF in the recruitment of proinflammatory monocytes, neutrophils and T-cells to the ischemic brain via a mechanism that is mediated by its A1 domain. ispartof: HAEMATOLOGICA vol:106 issue:3 pages:819-828 ispartof: location:Italy status: published
- Published
- 2020
- Full Text
- View/download PDF
22. Molecular correlates of hypothalamic development in songbird ontogeny in comparison with the telencephalon
- Author
-
Annemie Van der Linden, Gaurav Majumdar, Garima Yadav, Louis Coussement, Tim De Meyer, Marleen Verhoye, Julie Hamaide, Wim Vanden Berghe, and Jacques Balthazart
- Subjects
Male ,Telencephalon ,0301 basic medicine ,Ontogeny ,Hypothalamus ,Biology ,Biochemistry ,Transcriptome ,03 medical and health sciences ,0302 clinical medicine ,Neuroplasticity ,Genetics ,medicine ,Animals ,Molecular Biology ,Zebra finch ,Sex Characteristics ,Receptors, Thyroid Hormone ,Cerebrum ,Sexual Development ,Gene Expression Regulation, Developmental ,biology.organism_classification ,Songbird ,Sexual dimorphism ,Chemistry ,030104 developmental biology ,medicine.anatomical_structure ,nervous system ,Evolutionary biology ,Female ,Human medicine ,Finches ,030217 neurology & neurosurgery ,Biotechnology ,Hormone - Abstract
Development of the songbird brain provides an excellent experimental model for understanding the regulation of sex differences in ontogeny. Considering the regulatory role of the hypothalamus in endocrine, in particular reproductive, physiology, we measured the structural (volume) and molecular correlates of hypothalamic development during ontogeny of male and female zebra finches. We quantified by relative quantitative polymerase chain reaction (rqPCR) the expression of 14 genes related to thyroid and steroid hormones actions as well as 12 genes related to brain plasticity at four specific time points during ontogeny and compared these expression patterns with the expression of the same genes as detected by transcriptomics in the telencephalon. These two different methodological approaches detected specific changes with age and demonstrated that in a substantial number of cases changes observed in both brain regions are nearly identical. Other genes however had a tissue‐specific developmental pattern. Sex differences or interactions of sex by age were detected in the expression of a subset of genes, more in hypothalamus than telencephalon. These results correlate with multiple known aspects of the developmental and reproductive physiology but also raise a number of new functional questions.
- Published
- 2020
- Full Text
- View/download PDF
23. Endothelial dysfunction aggravates arterial media calcification in warfarin administered rats
- Author
-
Geoffrey Van den Bergh, Astrid Van den Branden, Britt Opdebeeck, Paul Fransen, Ellen Neven, Guido R.Y. De Meyer, Patrick C. D’Haese, and Anja Verhulst
- Subjects
Male ,Calcinosis ,Endothelial Cells ,Biochemistry ,Rats ,Chemistry ,NG-Nitroarginine Methyl Ester ,Disease Progression ,Genetics ,Animals ,Calcium ,Human medicine ,Vascular Diseases ,Warfarin ,Tunica Media ,Vascular Calcification ,Biology ,Molecular Biology ,Biotechnology - Abstract
Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg−1 · d−1), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification.
- Published
- 2022
- Full Text
- View/download PDF
24. The Impact of RIPK1 Kinase Inhibition on Atherogenesis: A Genetic and a Pharmacological Approach
- Author
-
Pauline Puylaert, Isabelle Coornaert, Cédric H. G. Neutel, Yves Dondelinger, Tom Delanghe, Mathieu J. M. Bertrand, Pieter-Jan Guns, Guido R. Y. De Meyer, and Wim Martinet
- Subjects
RIPK1 ,NECROSIS ,Pharmacology. Therapy ,Biology and Life Sciences ,necroptosis ,Medicine (miscellaneous) ,MOUSE MODEL ,General Biochemistry, Genetics and Molecular Biology ,APOPTOSIS ,Chemistry ,CELL-DEATH ,ATHEROSCLEROSIS ,INFLAMMATION ,Medicine and Health Sciences ,SEX ,Human medicine ,atherosclerosis ,Biology - Abstract
RIPK1 (receptor-interacting serine/threonine-protein kinase 1) enzymatic activity drives both apoptosis and necroptosis, a regulated form of necrosis. Because necroptosis is involved in necrotic core development in atherosclerotic plaques, we investigated the effects of a RIPK1S25D/S25D mutation, which prevents activation of RIPK1 kinase, on atherogenesis in ApoE−/− mice. After 16 weeks of western-type diet (WD), atherosclerotic plaques from ApoE−/− RIPK1S25D/S25D mice were significantly larger compared to ApoE−/− RIPK1+/+ mice (167 ± 34 vs. 78 ± 18 × 103 µm2, p = 0.01). Cell numbers (350 ± 34 vs. 154 ± 33 nuclei) and deposition of glycosaminoglycans (Alcian blue: 31 ± 6 vs. 14 ± 4%, p = 0.023) were increased in plaques from ApoE−/− RIPK1S25D/S25D mice while macrophage content (Mac3: 2.3 ± 0.4 vs. 9.8 ± 2.4%, p = 0.012) was decreased. Plaque apoptosis was not different between both groups. In contrast, pharmacological inhibition of RIPK1 kinase with GSK’547 (10 mg/kg BW/day) in ApoE−/− Fbn1C1039G+/− mice, a model of advanced atherosclerosis, did not alter plaque size after 20 weeks WD, but induced apoptosis (TUNEL: 136 ± 20 vs. 62 ± 9 cells/mm2, p = 0.004). In conclusion, inhibition of RIPK1 kinase activity accelerated plaque progression in ApoE−/− RIPK1S25D/S25D mice and induced apoptosis in GSK’547-treated ApoE−/− Fbn1C1039G+/− mice. Thus, without directly comparing the genetic and pharmacological studies, it can be concluded that targeting RIPK1 kinase activity does not limit atherogenesis.
- Published
- 2022
25. Progressive aortic stiffness in aging C57Bl/6 mice displays altered contractile behaviour and extracellular matrix changes
- Author
-
Sofie De Moudt, Jhana O. Hendrickx, Cédric Neutel, Dorien De Munck, Arthur Leloup, Guido R. Y. De Meyer, Wim Martinet, and Paul Fransen
- Subjects
Male ,Aging ,Medicine (miscellaneous) ,General Biochemistry, Genetics and Molecular Biology ,Muscle, Smooth, Vascular ,Extracellular Matrix ,Mice, Inbred C57BL ,Mice ,Vascular Stiffness ,Cardiovascular Diseases ,cardiovascular system ,Animals ,Human medicine ,General Agricultural and Biological Sciences ,Biology ,Engineering sciences. Technology - Abstract
Aortic stiffness is a hallmark of cardiovascular disease, but its pathophysiology remains incompletely understood. This study presents an in-dept characterization of aortic aging in male C57Bl/6 mice (2–24 months). Cardiovascular measurements include echocardiography, blood pressure measurement, and ex vivo organ chamber experiments. In vivo and ex vivo aortic stiffness increases with age, and precede the development of cardiac hypertrophy and peripheral blood pressure alterations. Contraction-independent stiffening (due to extracellular matrix changes) is pressure-dependent. Contraction-dependent aortic stiffening develops through heightened α1-adrenergic contractility, aberrant voltage-gated calcium channel function, and altered vascular smooth muscle cell calcium handling. Endothelial dysfunction is limited to a modest decrease in sensitivity to acetylcholine-induced relaxation with age. Our findings demonstrate that progressive arterial stiffening in C57Bl/6 mice precedes associated cardiovascular disease. Aortic aging is due to changes in extracellular matrix and vascular smooth muscle cell signalling, and not to altered endothelial function.
- Published
- 2022
26. Short-Term Pharmacological Induction of Arterial Stiffness and Hypertension with Angiotensin II Does Not Affect Learning and Memory and Cerebral Amyloid Load in Two Murine Models of Alzheimer's Disease
- Author
-
Jhana O. Hendrickx, Elke Calus, Peter Paul De Deyn, Debby Van Dam, Guido R. Y. De Meyer, and Molecular Neuroscience and Ageing Research (MOLAR)
- Subjects
cognition ,Amyloid ,BLOOD-PRESSURE ,PROGRESSION ,Amyloidogenic Proteins ,arterial stiffness ,hypertension ,angiotensin II ,Alzheimer’s disease ,amyloid ,Catalysis ,Inorganic Chemistry ,ANEURYSM ,Mice ,Vascular Stiffness ,Alzheimer Disease ,Animals ,Physical and Theoretical Chemistry ,Biology ,Molecular Biology ,Spectroscopy ,ANTIHYPERTENSIVE DRUG-THERAPY ,Amyloid beta-Peptides ,Angiotensin II ,Organic Chemistry ,General Medicine ,MOUSE MODEL ,ASSOCIATION ,Amyloidosis ,Alzheimer's disease ,Computer Science Applications ,Chemistry ,Disease Models, Animal ,Cardiovascular Diseases ,COGNITIVE DECLINE ,Hypertension ,LOSARTAN - Abstract
Given the unprecedented rise in the world’s population, the prevalence of prominent age-related disorders, like cardiovascular disease and dementia, will further increase. Recent experimental and epidemiological evidence suggests a mechanistic overlap between cardiovascular disease and dementia with a specific focus on the linkage between arterial stiffness, a strong independent predictor of cardiovascular disease, and/or hypertension with Alzheimer’s disease. In the present study, we investigated whether pharmacological induction of arterial stiffness and hypertension with angiotensin II (1 µg·kg−1·min−1 for 28 days via an osmotic minipump) impairs the progression of Alzheimer’s disease in two mouse models (hAPP23+/− and hAPPswe/PSEN1dE9 mice). Our results show increased arterial stiffness in vivo and hypertension in addition to cardiac hypertrophy after angiotensin II treatment. However, visuospatial learning and memory and pathological cerebral amyloid load in both Alzheimer’s disease mouse models were not further impaired. It is likely that the 28-day treatment period with angiotensin II was too short to observe additional effects on cognition and cerebral pathology.
- Published
- 2022
27. Proteomic assessment of C57BL/6 hippocampi after non-selective pharmacological inhibition of nitric oxide synthase activity : implications of seizure-like neuronal hyperexcitability followed by tauopathy
- Author
-
Jhana O. Hendrickx, Charlotte Adams, Anne Sieben, Kris Laukens, Debby Van Dam, and Guido R. Y. De Meyer
- Subjects
hippocampus ,hyperexcitability ,Pharmacology. Therapy ,tauopathy ,Medicine (miscellaneous) ,General Biochemistry, Genetics and Molecular Biology ,Chemistry ,proteomics ,ribosomal dysfunction ,L-NAME ,nitric oxide ,mitochondrial dysfunction ,Biology - Abstract
Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC–MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment.
- Published
- 2022
28. Anopheles maculipennis Complex in The Netherlands : First Record of Anopheles daciae (Diptera: Culicidae)
- Author
-
A. Ibáñez-Justicia, Nathalie Smitz, Rody Blom, Ann Vanderheyden, Frans Jacobs, Kenny Meganck, Sophie Gombeer, Thierry Backeljau, Constantianus J. M. Koenraadt, J. S. Griep, Marc De Meyer, and Arjan Stroo
- Subjects
DNA-based species identification ,Ecology ,Ecological Modeling ,PE&RC ,Laboratorium voor Entomologie ,Agricultural and Biological Sciences (miscellaneous) ,Chemistry ,malaria vector ,Laboratory of Entomology ,mosquitoes ,ribosomal internal transcribed spacer 2 (ITS2) ,Biology ,Nature and Landscape Conservation - Abstract
Despite their past importance as vectors of indigenous malaria, the species composition and spatial distribution of the members of the Anopheles maculipennis complex have been studied to a limited extent in the Netherlands. Therefore, this investigation focuses on the distribution of the members of this complex in the Netherlands, including Anopheles daciae, which has recently been found in countries bordering the Netherlands. In the framework of a national mosquito surveillance between 2010 and 2021, a total of 541 specimens of An. maculipennis s.l. were analyzed from 161 locations covering the entire territory. In addition, 89 specimens were analyzed from overwintering sites during the winter of 2020/2021. All individual mosquitoes were identified to species-level using Sanger sequencing of the ribosomal internal transcribed spacer 2. To characterize the habitat of An. maculipennis s.l. in the Netherlands, land cover use data was extracted in a 1 km buffer area around each finding location. For populations collected in summers between 2010 and 2021, the most frequent species was An. messeae, present in 88.19% of the locations, followed by An. maculipennis s.s. (11.80%), An. atroparvus (3.72%) and An. daciae (3.72%). Anopheles daciae was found in the southern inland areas of the country. Furthermore, An. messeae and An. daciae occurred in sympatry at overwintering sites. This study provides relevant information on the occurrence of species of the Anopheles maculipennis complex in the Netherlands, contributing to a better estimation of the risk of mosquito-borne disease in the country.
- Published
- 2022
29. Gasdermin D deficiency limits the transition of atherosclerotic plaques to an inflammatory phenotype in ApoE knock-out mice
- Author
-
Pauline Puylaert, Melissa Van Praet, Frederik Vaes, Cédric H. G. Neutel, Lynn Roth, Pieter-Jan Guns, Guido R. Y. De Meyer, and Wim Martinet
- Subjects
Chemistry ,Pharmacology. Therapy ,Medicine (miscellaneous) ,Human medicine ,gasdermin D ,pyroptosis ,inflammation ,atherosclerosis ,Biology ,General Biochemistry, Genetics and Molecular Biology - Abstract
Gasdermin D (GSDMD) is the key executor of pyroptotic cell death. Recent studies suggest that GSDMD-mediated pyroptosis is involved in atherosclerotic plaque destabilization. We report that cleaved GSDMD is expressed in macrophage- and smooth muscle cell-rich areas of human plaques. To determine the effects of GSDMD deficiency on atherogenesis, ApoE−/− Gsdmd−/− (n = 16) and ApoE−/−Gsdmd+/+ (n = 18) mice were fed a western-type diet for 16 weeks. Plaque initiation and formation of stable proximal aortic plaques were not altered. However, plaques in the brachiocephalic artery (representing more advanced lesions compared to aortic plaques) of ApoE−/− Gsdmd−/− mice were significantly smaller (115 ± 18 vs. 186 ± 16 × 103 µm2, p = 0.006) and showed features of increased stability, such as decreased necrotic core area (19 ± 4 vs. 37 ± 7 × 103 µm2, p = 0.03) and increased αSMA/MAC3 ratio (1.6 ± 0.3 vs. 0.7 ± 0.1, p = 0.01), which was also observed in proximal aortic plaques. Interestingly, a significant increase in TUNEL positive cells was observed in brachiocephalic artery plaques from ApoE−/− Gsdmd−/− mice (141 ± 25 vs. 62 ± 8 cells/mm2, p = 0.005), indicating a switch to apoptosis. This switch from pyroptosis to apoptosis was also observed in vitro in Gsdmd−/− macrophages. In conclusion, targeting GSDMD appears to be a promising approach for limiting the transition to an inflammatory, vulnerable plaque phenotype.
- Published
- 2022
30. Acetylsalicylic Acid Reduces Passive Aortic Wall Stiffness and Cardiovascular Remodelling in a Mouse Model of Advanced Atherosclerosis
- Author
-
Lynn Roth, Miche Rombouts, Dorien M. Schrijvers, Besa Emini Veseli, Wim Martinet, and Guido R. Y. De Meyer
- Subjects
collagen ,Neutrophils ,aspirin ,QH301-705.5 ,Fibrillin-1 ,Myocardial Infarction ,neutrophil–lymphocyte ratio ,elastin ,Blood Pressure ,Kaplan-Meier Estimate ,030204 cardiovascular system & hematology ,Vascular Remodeling ,Catalysis ,Article ,arterial stiffness ,SMAD ,Inorganic Chemistry ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Apolipoproteins E ,Vascular Stiffness ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,Animals ,Lymphocytes ,Physical and Theoretical Chemistry ,Biology (General) ,Biology ,Molecular Biology ,QD1-999 ,Spectroscopy ,Aorta ,030304 developmental biology ,0303 health sciences ,Pharmacology. Therapy ,Organic Chemistry ,General Medicine ,Atherosclerosis ,3. Good health ,Computer Science Applications ,Disease Models, Animal ,Chemistry ,Disease Progression ,Female ,lipids (amino acids, peptides, and proteins) - Abstract
Acetylsalicylic acid (ASA) is widely used in secondary prevention of cardiovascular (CV) disease, mainly because of its antithrombotic effects. Here, we investigated whether ASA can prevent the progression of vessel wall remodelling, atherosclerosis, and CV complications in apolipoprotein E deficient (ApoE−/−) mice, a model of stable atherosclerosis, and in ApoE−/− mice with a mutation in the fibrillin-1 gene (Fbn1C1039G+/−), which is a model of elastic fibre fragmentation, accompanied by exacerbated unstable atherosclerosis. Female ApoE−/− and ApoE−/−Fbn1C1039G+/− mice were fed a Western diet (WD). At 10 weeks of WD, the mice were randomly divided into four groups, receiving either ASA 5 mg/kg/day in the drinking water (ApoE−/− (n = 14), ApoE−/−Fbn1C1039G+/− (n = 19)) or plain drinking water (ApoE−/− (n = 15), ApoE−/−Fbn1C1039G+/− (n = 21)) for 15 weeks. ApoE−/−Fbn1C1039G+/− mice showed an increased neutrophil–lymphocyte ratio (NLR) compared to ApoE−/− mice, and this effect was normalised by ASA. In the proximal ascending aorta wall, ASA-treated ApoE−/−Fbn1C1039G+/− mice showed less p-SMAD2/3 positive nuclei, a lower collagen percentage and an increased elastin/collagen ratio, consistent with the values measured in ApoE−/− mice. ASA did not affect plaque progression, incidence of myocardial infarction and survival of ApoE−/−Fbn1C1039G+/− mice, but systolic blood pressure, cardiac fibrosis and hypertrophy were reduced. In conclusion, ASA normalises the NLR, passive wall stiffness and cardiac remodelling in ApoE−/−Fbn1C1039G+/− mice to levels observed in ApoE−/− mice, indicating additional therapeutic benefits of ASA beyond its classical use.
- Published
- 2021
- Full Text
- View/download PDF
31. Long-term pharmacological inhibition of the activity of all nos isoforms rather than genetic knock-out of endothelial nos leads to impaired spatial learning and memory in c57bl/6 mice
- Author
-
Jhana O. Hendrickx, Sofie De Moudt, Elke Calus, Peter Paul De Deyn, Debby Van Dam, Guido R. Y. De Meyer, and Molecular Neuroscience and Ageing Research (MOLAR)
- Subjects
Chemistry ,QH301-705.5 ,Pharmacology. Therapy ,Nitric oxide synthase ,Medicine (miscellaneous) ,Cognitive decline ,Human medicine ,Biology (General) ,Biology ,arterial stiffness ,cognitive decline ,nitric oxide synthase ,Arterial stiffness ,General Biochemistry, Genetics and Molecular Biology ,Article - Abstract
Increasing epidemiological and experimental evidence points to a link between arterial stiffness and rapid cognitive decline. However, the underlying mechanism linking the two diseases is still unknown. The importance of nitric oxide synthases in both diseases is well-defined. In this study, we introduced arterial stiffness in both genetic (eNOS−/−, endothelial nitric oxide synthase knockout) and pharmacological (N(G)-nitro-L-arginine methyl ester (L-NAME) treatment) NO dysfunction models to study their association with cognitive decline. Our findings demonstrate that the non-selective inhibition of NOS activity with L-NAME induces cardiac dysfunction, arterial stiffness, and a decline in hippocampal-dependent learning and memory. This outcome demonstrates the importance of neuronal NOS (nNOS) in both cardiovascular and neurological pathophysiology and its potential contribution in the convergence between arterial stiffness and cognitive decline.
- Published
- 2021
32. Doxorubicin Impairs Smooth Muscle Cell Contraction: Novel Insights in Vascular Toxicity
- Author
-
Timen J. Schenk, Wim Martinet, Kasper Favere, Birgit Van Asbroeck, Dustin N. Krüger, Emeline M. Van Craenenbroeck, Callan D. Wesley, Owen R. Diebels, Guido R.Y. De Meyer, Matthias Bosman, Cédric H. G. Neutel, Pieter-Jan Guns, and Bart Faes
- Subjects
Male ,Contraction (grammar) ,Vascular smooth muscle ,cardio-oncology ,Vasodilation ,Pharmacology ,Muscle, Smooth, Vascular ,endothelial dysfunction ,Mice ,Medicine and Health Sciences ,polycyclic compounds ,Diltiazem ,Biology (General) ,Spectroscopy ,Antibiotics, Antineoplastic ,Chemistry ,General Medicine ,Computer Science Applications ,arterial stiffness ,medicine.drug ,Muscle Contraction ,QH301-705.5 ,macromolecular substances ,doxorubicin ,Catalysis ,Article ,Inorganic Chemistry ,Vascular Stiffness ,In vivo ,medicine ,Animals ,Physical and Theoretical Chemistry ,QD1-999 ,Biology ,Molecular Biology ,Phenylephrine ,organic chemicals ,Organic Chemistry ,technology, industry, and agriculture ,Biology and Life Sciences ,Angiotensin II ,vascular smooth muscle cell contraction ,Mice, Inbred C57BL ,carbohydrates (lipids) ,Vasoconstriction ,Calcium ,non-selective cation channel ,Calcium Channels ,Endothelium, Vascular ,Ex vivo - Abstract
Clinical and animal studies have demonstrated that chemotherapeutic doxorubicin (DOX) increases arterial stiffness, a predictor of cardiovascular risk. Despite consensus about DOX-impaired endothelium-dependent vasodilation as a contributing mechanism, some studies have reported conflicting results on vascular smooth muscle cell (VSMC) function after DOX treatment. The present study aimed to investigate the effects of DOX on VSMC function. To this end, mice received a single injection of 4 mg DOX/kg, or mouse aortic segments were treated ex vivo with 1 μM DOX, followed by vascular reactivity evaluation 16 h later. Phenylephrine (PE)-induced VSMC contraction was decreased after DOX treatment. DOX did not affect the transient PE contraction dependent on Ca2+ release from the sarcoplasmic reticulum (0 mM Ca2+), but it reduced the subsequent tonic phase characterised by Ca2+ influx. These findings were supported by similar angiotensin II and attenuated endothelin-1 contractions. The involvement of voltage-gated Ca2+ channels in DOX-decreased contraction was excluded by using levcromakalim and diltiazem in PE-induced contraction and corroborated by similar K+ and serotonin contractions. Despite the evaluation of multiple blockers of transient receptor potential channels, the exact mechanism for DOX-decreased VSMC contraction remains elusive. Surprisingly, DOX reduced ex vivo but not in vivo arterial stiffness, highlighting the importance of appropriate timing for evaluating arterial stiffness in DOX-treated patients.
- Published
- 2021
- Full Text
- View/download PDF
33. Altered stress hormone levels affect in vivo vascular function in the hAPP23(+/-) overexpressing mouse model of Alzheimer's disease
- Author
-
Guido R.Y. De Meyer, Jhana O. Hendrickx, Peter Paul De Deyn, Paul Fransen, Sofie De Moudt, Debby Van Dam, and Molecular Neuroscience and Ageing Research (MOLAR)
- Subjects
Genetically modified mouse ,medicine.medical_specialty ,Physiology ,BLOOD-PRESSURE VARIABILITY ,PROTEIN ,Disease ,amyloid precursor protein ,Affect (psychology) ,alpha-adrenergic receptor-dependent contraction ,AGE ,In vivo ,DEFICITS ,Physiology (medical) ,Internal medicine ,Amyloid precursor protein ,medicine ,Pulse wave velocity ,ANTIHYPERTENSIVE DRUG-THERAPY ,biology ,hypercortisolism ,Chemistry ,AMYLOID-BETA ,Stress hormone ,CORTICOTROPIN-RELEASING-FACTOR ,MICE ,Endocrinology ,Blood pressure ,pulse-wave velocity ,stress hormone ,biology.protein ,Human medicine ,Cardiology and Cardiovascular Medicine ,ARTERIAL STIFFNESS - Abstract
Alzheimer's disease (AD) has long been considered a brain-specific dementia syndrome. However, in recent decades, the occurrence of cardiovascular (CV) disease in the progression of AD has been confirmed by increasing epidemiological evidence. In this study, we conducted an in-depth cardiovascular characterization of a humanized amyloid precursor protein (APP) overexpressing mouse model (hAPP23(+/-)), which overexpresses the Swedish mutation (KM670/671NL). At the age of 6 mo, hAPP23(+/-) mice had a lower survival, lower body weight, and increased corticosterone and VMA levels compared with C57BL/6 littermates. Systolic blood pressure was increased in hAPP23(+/-) animals compared with C57BU6 littermates, but diastolic blood pressure was not statistically different. Pulse pressure remained unchanged but abdominal and carotid pulse-wave velocity (aPWV and cPWV) were increased in hAPP23(+/-) compared with C57BL/6 mice. Echocardiography showed no differences in systolic or diastolic cardiac function. Ex vivo evaluation of vascular function showed decreased adreno receptor dependent vasoconstriction of hAPP23(+/-) aortic segments, although the isobaric biomechanics of the aortic wall were similar to C57BL/6 aortic segments. In conclusion, hAPP23(+/-) mice exhibited high serum corticosterone levels, elevated systolic blood pressure, and increased arterial stiffness in vivo. However, ex vivo aortic stiffness of hAPP23(+/-) aortic segments was not changed and vascular reactivity to alpha(1)-drenoceptor stimulation was attenuated. These findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of AD.NEW & NOTEWORTHY We showed that male amyloid precursor protein (APP) transgenic mice have higher circulating stress hormone levels. As a result, higher systolic blood pressure and pulse-wave velocity were measured in vivo in addition to a smaller alpha-adrenergic receptor-dependent contraction upon ex vivo stimulation with phenylephrine. Our findings highlight the need for more frequent assessment of circulating stress hormone levels and PWV measurements in daily clinical practice for people at risk of Alzheimer's disease.
- Published
- 2021
34. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS
- Author
-
Xavier Perret, Mauro Tonolla, Sofie E. De Meyer, Joël F. Pothier, Dominik Ziegler, Romain K Fossou, Julie Ardley, John Howieson, Wayne Reeve, Guido Vogel, and Valentin Pflüger
- Subjects
Ribosomal Proteins ,Root nodule ,Legume nodules ,Sequence analysis ,Molecular Sequence Data ,Rhizobia ,Computational biology ,Applied Microbiology and Biotechnology ,Genome ,DNA, Ribosomal ,Microbiology ,Bacterial Proteins ,Ribosomal protein ,RNA, Ribosomal, 16S ,Cluster Analysis ,Phylogeny ,Soil Microbiology ,GEBA-RNB ,biology ,Bacteria ,Bacterial fingerprints ,General Medicine ,Biodiversity ,Sequence Analysis, DNA ,570: Biologie ,Ribosomal RNA ,biology.organism_classification ,16S ribosomal RNA ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,Root Nodules, Plant ,Biomarkers ,Biotechnology ,Symbiotic bacteria - Abstract
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch) Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.
- Published
- 2021
35. Studying Stroke Thrombus Composition After Thrombectomy: What Can We Learn?
- Author
-
Peter Vanacker, Karen M. Doyle, Waleed Brinjikji, Tommy Andersson, Simon F. De Meyer, Senna Staessens, Olivier François, Horizon 2020, Fonds voor Wetenschappelijk Onderzoek – Vlaanderen, Queen Elisabeth Medical Foundation, National Institutes of Health, and Science Foundation Ireland
- Subjects
medicine.medical_specialty ,leukocytes ,Stroke care ,von Willebrand factor ,Fibrin ,Article ,Von Willebrand factor ,Internal medicine ,medicine ,ischemic stroke ,Humans ,cardiovascular diseases ,fibrin ,Thrombus ,Stroke ,health care economics and organizations ,Ischemic Stroke ,Thrombectomy ,Advanced and Specialized Nursing ,biology ,business.industry ,Thrombosis ,medicine.disease ,Stroke Thrombus ,thrombectomy ,Ischemic stroke ,cardiovascular system ,Cardiology ,biology.protein ,Human medicine ,Neurology (clinical) ,Cardiology and Cardiovascular Medicine ,business ,Composition - Abstract
The composition of ischemic stroke thrombi has gained an increasing amount of interest in recent years. The implementation of endovascular procedures in standard stroke care has granted researchers the unique opportunity to examine patient thrombus material. Increasing evidence indicates that stroke thrombi are complex and heterogenous, consisting of various biochemical (eg, fibrin, von Willebrand Factor, and neutrophil extracellular traps) and cellular (eg, red blood cells, platelets, leukocytes, and bacteria) components. This complex composition may explain therapeutic limitations and also offer novel insights in several aspects of stroke management. Better understanding of thrombus characteristics could, therefore, potentially lead to improvements in the management of patients with stroke. In this review, we provide a comprehensive overview of the lessons learned by examining stroke thrombus composition after endovascular thrombectomy and its potential relevance for thrombectomy success rates, thrombolysis, clinical outcomes, stroke etiology, and radiological imaging. This work was supported by research grants to S.F.D.M. from the Fonds voor Wetenschappelijk Onderzoek – Vlaanderen (FWO) (research grants G0A8613, G078517, 1509216N and G0E7620N), the KU Leuven (OT/14/099, ISP/14/02L2 and PDM/20/147), the Queen Elisabeth Medical Foundation and by the European Union's Horizon 2020 Research and Innovation Program INSIST under grant agreement No 777072. W.B received funding from the National Institutes of Health Grant 1R01NS105853-01. K.M.D. received funding from Science Foundation Ireland, funding from Cerenovus and funding from Sensome. peer-reviewed
- Published
- 2021
36. Age-related cognitive decline in spatial learning and memory of C57BL/6J mice
- Author
-
Guido R.Y. De Meyer, Peter Paul De Deyn, Sofie De Moudt, Elke Calus, Debby Van Dam, Jhana O. Hendrickx, and Molecular Neuroscience and Ageing Research (MOLAR)
- Subjects
Male ,Aging ,Novel object recognition ,Spatial Learning ,Morris water navigation task ,C57bl 6j ,Hippocampus ,Behavioral Neuroscience ,Mice ,MOUSE MODELS ,Memory ,Morris Water Maze Test ,Medicine ,Dementia ,6J ,Psychology ,Animals ,Cognitive Dysfunction ,Cognitive decline ,Pathological ,Biology ,business.industry ,Cognition ,Spontaneous cognitive decline ,medicine.disease ,Mice, Inbred C57BL ,C57BL ,Disease Models, Animal ,Spatial learning ,Human medicine ,business ,Neuroscience ,Morris water maze ,Open Field Test - Abstract
During the last decades, most of the preclinical neurodegenerative research was performed in mouse models of amyloidosis, tauopathies or alpha-synucleinopathies preferentially maintained on a C57BL/6J background. However, comprehensive neurobehavioural data from C57BL/6J mice outlining the critical point of spontaneous cognitive decline are incomplete. In this study, we aimed for the neurobehavioural phenotyping of hippocampusdependent spatial learning and memory of aging C57BL/6J mice. Neurobehavioural phenotyping was performed by means of a Morris Water Maze (MWM) and a Novel Object Recognition (NOR) test. MWM measurements revealed signs of age-related memory loss in C57BL/6J animals from the age of 6 months onward. The NOR assessment strengthened latter finding by decreasing discrimination indexes (DI) and recognition indexes (RI) starting from the age of 6 months. Taken together, these findings contribute to the current knowledge of spontaneous cognitive behaviours of this perhaps most widely used mouse strain and serve as a benchmark for dementia mouse models to distinguish spontaneous from pathological neurodegenerative behaviour.
- Published
- 2021
37. Mechanical Characterization of Thrombi Retrieved with Endovascular Thrombectomy in Patients with Acute Ischemic Stroke
- Author
-
Adriaan C.G.M. van Es, Heleen M.M. van Beusekom, J. Patrick McGarry, Simon F. De Meyer, Aad van der Lugt, Ali C. Akyildiz, Diederik W.J. Dippel, Hajo M Hund, Nikki Boodt, Behrooz Fereidoonnezhad, Philip R W Snouckaert van Schauburg, Hester F. Lingsma, Frank J. H. Gijsen, Public Health, Radiology & Nuclear Medicine, Neurology, and Cardiology
- Subjects
Male ,030218 nuclear medicine & medical imaging ,Brain Ischemia ,0302 clinical medicine ,Interquartile range ,Platelet ,fibrin ,Acute ischemic stroke ,Stroke ,Aged, 80 and over ,biology ,Endovascular Procedures ,Middle Aged ,3. Good health ,Biomechanical Phenomena ,thrombectomy ,Cardiology ,cardiovascular system ,Female ,Cardiology and Cardiovascular Medicine ,Life Sciences & Biomedicine ,circulatory and respiratory physiology ,medicine.medical_specialty ,acute stroke ,leukocytes ,Clinical Neurology ,Fibrin ,03 medical and health sciences ,Internal medicine ,medicine ,Humans ,In patient ,cardiovascular diseases ,Thrombus ,Acute stroke ,Aged ,Ischemic Stroke ,Advanced and Specialized Nursing ,Science & Technology ,business.industry ,Thrombosis ,medicine.disease ,Peripheral Vascular Disease ,biology.protein ,Cardiovascular System & Cardiology ,Neurology (clinical) ,Neurosciences & Neurology ,business ,030217 neurology & neurosurgery ,medical center - Abstract
Background and Purpose: Mechanical properties of thromboemboli play an important role in the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke. However, very limited data on mechanical properties of human stroke thrombi are available. We aimed to mechanically characterize thrombi retrieved with EVT, and to assess the relationship between thrombus composition and thrombus stiffness. Methods: Forty-one thrombi from 19 patients with acute stroke who underwent EVT between July and October 2019 were mechanically analyzed, directly after EVT. We performed unconfined compression experiments and determined tangent modulus at 75% strain (E t75 ) as a measure for thrombus stiffness. Thrombi were histologically analyzed for fibrin/platelets, erythrocytes, leukocytes, and platelets, and we assessed the relationship between histological components and E t75 with univariable and multivariable linear mixed regression. Results: Median E t75 was 560 (interquartile range, 393–1161) kPa. In the multivariable analysis, fibrin/platelets were associated with increased E t75 (aβ, 9 [95% CI, 5 to 13]) kPa, erythrocytes were associated with decreased E t75% (aβ, −9 [95% CI, −5 to −13]) kPa. We found no association between leukocytes and E t75 . High platelet values were strongly associated with increased E t75 (aβ, 56 [95% CI, 38–73]). Conclusions: Fibrin/platelet content of thrombi retrieved with EVT for acute ischemic stroke is strongly associated with increased thrombus stiffness. For thrombi with high platelet values, there was a very strong relationship with thrombus stiffness. Our data provide a basis for future research on the development of next-generation EVT devices tailored to thrombus composition.
- Published
- 2021
38. A study on risk factors for macroscopic gut abnormalities in intensively reared broiler chickens
- Author
-
Richard Ducatelle, Filip Van Immerseel, Nikolai Ongena, Fien De Meyer, Moniek Ringenier, Jeroen Dewulf, and Nele Caekebeke
- Subjects
Male ,Gastrointestinal Diseases ,040301 veterinary sciences ,Unknown aetiology ,Physiology ,Dermatitis ,Biology ,Skin Diseases ,Feed conversion ratio ,Foot Diseases ,0403 veterinary science ,Food Animals ,Risk Factors ,medicine ,Animals ,Animal Husbandry ,Risk factor ,Poultry Diseases ,General Immunology and Microbiology ,0402 animal and dairy science ,Broiler ,04 agricultural and veterinary sciences ,medicine.disease ,biology.organism_classification ,040201 dairy & animal science ,Gastrointestinal Tract ,Eimeria acervulina ,Coccidiosis ,Hock ,Dysbiosis ,Female ,Animal Science and Zoology ,Chickens - Abstract
Intensification of broiler production has coincided with an increase in enteric disorders. Enteric syndromes of unknown aetiology are often associated with an increased feed conversion ratio and are given the general term "dysbiosis". Despite the importance of dysbiosis, information on factors contributing to this condition are scarce. Therefore, the aim of this study was to describe dysbiosis in broilers (Ross 308) during one production round and to identify risk factors. Fifteen farms in Flanders (Belgium) were followed up, with visits at days 10, 17, 20, 24 and 28 of production. At every visit, 10 random birds were inspected for footpad lesions, hock burns and breast blisters. Also, coccidiosis and enteric abnormalities were scored after necropsy. A gut appearance score (GAS) was given based on 10 macroscopically visible parameters, where a higher GAS equalled more enteric abnormalities. Footpad lesions were seen in 14 farms and increased in prevalence with the age of the birds. Hock burns were seen less frequently, and no breast blisters were detected. Eimeria acervulina lesions were most frequently observed, followed by E. maxima and E. tenella lesions. The average GAS increased from day 10 until day 20. The strong correlations between the GAS at days 10, 17 and 20 indicate that prevalence of gut abnormalities at day 10 can be predictive for scores later on. A higher amount of intestinal defects was seen in older female birds, in the presence of a conceivable E. tenella infection and at farms with a higher productivity and sanitary status.RESEARCH HIGHLIGHTSGut lesions found in young broilers can predict further development of defects.Caecal lesions showed the strongest correlation with GAS in a multivariate model.
- Published
- 2020
- Full Text
- View/download PDF
39. Three-Dimensional Imaging of Intraplaque Neovascularization in a Mouse Model of Advanced Atherosclerosis
- Author
-
Paul H.A. Quax, Jean-Pierre Timmermans, Isabel Pintelon, Wim Martinet, Margreet R. de Vries, Paola Perrotta, and Guido R.Y. De Meyer
- Subjects
Carotid Artery Diseases ,0301 basic medicine ,CD31 ,Pathology ,medicine.medical_specialty ,CD3 Complex ,Apolipoprotein B ,Mice, Knockout, ApoE ,Physiology ,Angiogenesis ,Fibrillin-1 ,030204 cardiovascular system & hematology ,Intraplaque angiogenesis ,law.invention ,Neovascularization ,03 medical and health sciences ,Imaging, Three-Dimensional ,0302 clinical medicine ,Confocal microscopy ,law ,medicine ,Animals ,Fluorescent Antibody Technique, Indirect ,Immunolabeling-enabled three-dimensional imaging of solvent-cleared organs ,Microscopy, Confocal ,Neovascularization, Pathologic ,biology ,Chemistry ,Pharmacology. Therapy ,Atherosclerosis ,Primary and secondary antibodies ,Plaque, Atherosclerotic ,Disease Models, Animal ,Carotid Arteries ,030104 developmental biology ,Three dimensional imaging ,Mutation ,biology.protein ,Female ,Human medicine ,medicine.symptom ,Antibody ,Cardiology and Cardiovascular Medicine ,Biomarkers - Abstract
Multiple lines of evidence suggest that intraplaque (IP) neovascularization promotes atherosclerotic plaque growth, destabilization, and rupture. However, pharmacological inhibition of IP neovascularization remains largely unexplored due to the limited number of animal models that develop IP neovessels and the lack of reliable methods for visualizing IP angiogenesis. Here, we applied 3D confocal microscopy with an optimized tissue-clearing process, immunolabeling-enabled three-dimensional imaging of solvent-cleared organs, to visualize IP neovessels in apolipoprotein E-deficient (ApoE−/−) mice carrying a heterozygous mutation (C1039+/−) in the fibrillin-1 gene. Unlike regular ApoE−/− mice, this mouse model is characterized by the presence of advanced plaques with evident IP neovascularization. Plaques were stained with antibodies against endothelial marker CD31 for 3 days, followed by incubation with fluorescently labeled secondary antibodies. Subsequent tissue clearing with dichloromethane (DCM)/methanol, DCM, and dibenzyl ether allowed easy visualization and 3D reconstruction of the IP vascular network while plaque morphology remained intact.
- Published
- 2020
- Full Text
- View/download PDF
40. Selection of miRNA reference genes for plant defence studies in rice (Oryza sativa)
- Author
-
Tina Kyndt, Tim De Meyer, Lien De Smet, and Bruno Verstraeten
- Subjects
0106 biological sciences ,0301 basic medicine ,Normalization (statistics) ,Plant Science ,Computational biology ,Biology ,01 natural sciences ,Regulatory rna ,Host-Parasite Interactions ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Reference genes ,microRNA ,Genetics ,Animals ,Tylenchoidea ,Gene ,Selection (genetic algorithm) ,Disease Resistance ,Oryza sativa ,Gene Expression Profiling ,Oryza ,MicroRNAs ,030104 developmental biology ,Meloidogyne graminicola ,010606 plant biology & botany - Abstract
MicroRNAs miR390-5p, miR7694-3p miR1868 and miR1849 were found to be suitable miRNA reference genes for rice, under either infection with the root-knot nematode Meloidogyne graminicola or treatment with BABA. RT-qPCR is a widely used method to investigate the expression levels of genes under certain conditions. A key step, however, to have reliable results is the normalization of expression. For every experimental condition, suitable reference genes must be chosen. These reference genes must not be affected by differences in experimental conditions. MicroRNAs are regulatory RNA molecules, able to direct the expression levels of protein coding genes. In plants, their attributed functions range from roles in development to immunity. In this work, microRNAs (miRNAs) are evaluated for their suitability as reference genes in rice after infection with root-knot nematode Meloidogyne graminicola or after priming with beta-amino butyric acid. The evaluation was based on their amplification efficiency and their stability estimates according to geNorm, NormFinder and BestKeeper. All tested miRNAs, excluding one, were considered acceptable for normalization. Furthermore, miRNAs were validated using miRNA sequencing data. The set of microRNAs miR390-5p and miR7694-3p was found to be the most stable combination under the tested conditions. Another miRNA set consisting of miR7694-3p, miR1868 and miR1849 also shows potential to be used for miRNA expression normalization under experimental conditions beyond the scope of this study. This work is the first report on reference miRNAs in rice for the purpose of plant defence studies.
- Published
- 2019
- Full Text
- View/download PDF
41. von Willebrand factor in experimental malaria‐associated acute respiratory distress syndrome
- Author
-
Hans Deckmyn, Sirima Kraisin, Philippe E. Van den Steen, Claudia Tersteeg, Kimberly Martinod, Sebastien Verhenne, Karen Vanhoorelbeke, Simon F. De Meyer, Thao-Thy Pham, and Nele Vandeputte
- Subjects
Male ,congenital, hereditary, and neonatal diseases and abnormalities ,Reticulocytes ,reticulocytes ,Plasmodium berghei ,Reticulocytosis ,Anemia ,malaria ,ADAMTS13 Protein ,030204 cardiovascular system & hematology ,Parasite load ,Parasite Load ,Pathogenesis ,03 medical and health sciences ,0302 clinical medicine ,Von Willebrand factor ,hemic and lymphatic diseases ,von Willebrand Factor ,medicine ,Animals ,Mice, Knockout ,Respiratory Distress Syndrome ,biology ,business.industry ,Hematology ,medicine.disease ,biology.organism_classification ,Thrombocytopenia ,ADAMTS13 ,respiratory distress syndrome ,Malaria ,3. Good health ,Mice, Inbred C57BL ,Disease Models, Animal ,von Willebrand Diseases ,Plasmodium berghei NK65 ,Immunology ,cardiovascular system ,biology.protein ,Female ,medicine.symptom ,Complication ,business ,circulatory and respiratory physiology - Abstract
BACKGROUND: Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a lethal complication of severe malaria, characterized by marked pulmonary inflammation. Patient studies have suggested a link between von Willebrand factor (VWF) and malaria severity. OBJECTIVES: To investigate the role of VWF in the pathogenesis of experimental MA-ARDS. METHODS: Plasmodium berghei NK65-E (PbNK65) parasites were injected in Vwf+/+ and Vwf-/- mice. Pathological parameters were assessed following infection. RESULTS: In accordance with patients with severe malaria, plasma VWF levels were increased and ADAMTS13 activity levels were reduced in experimental MA-ARDS. ADAMTS13- and plasmin-independent reductions of high molecular weight VWF multimers were observed at the end stage of disease. Thrombocytopenia was VWF-independent because it was observed in both Vwf+/+ and Vwf-/- mice. Interestingly, Vwf-/- mice had a shorter survival time compared with Vwf+/+ controls following PbNK65 infection. Lung edema could not explain this shortened survival because alveolar protein levels in Vwf-/- mice were approximately two times lower than in Vwf+/+ controls. Parasite load, on the other hand, was significantly increased in Vwf-/- mice compared with Vwf+/+ mice in both peripheral blood and lung tissue. In addition, anemia was only observed in PbNK65-infected Vwf-/- mice. Of note, Vwf-/- mice presented with two times more reticulocytes, a preferential target of the parasites. CONCLUSIONS: This study suggests that parasite load together with malarial anemia, rather than alveolar leakage, might contribute to shortened survival in PbNK65-infected Vwf-/- mice. VWF deficiency is associated with early reticulocytosis following PbNK65 infection, which potentially explains the increase in parasite load. ispartof: JOURNAL OF THROMBOSIS AND HAEMOSTASIS vol:17 issue:8 pages:1372-1383 ispartof: location:England status: published
- Published
- 2019
- Full Text
- View/download PDF
42. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes
- Author
-
Ana Vega, Logan C. Walker, Demis Tserpelis, Rita D. Brandão, Tim De Meyer, Klaas Mensaert, Amanda B. Spurdle, Anders Kvist, Vanessa Lattimore, M.N. Xenakis, Irene López-Perolio, Marinus J. Blok, Orland Diez, Miguel de la Hoya, Sara Gutiérrez-Enríquez, RS: FSE MSP, RS: GROW - R4 - Reproductive and Perinatal Medicine, Klinische Genetica, Genetica & Celbiologie, and MUMC+: DA KG Lab Centraal Lab (9)
- Subjects
HEREDITARY BREAST ,Cancer Research ,endocrine system diseases ,PREDICTION ,inherited breast ,targeted RNA‐seq ,0302 clinical medicine ,lynch syndrome ,skin and connective tissue diseases ,Genetics ,RISK ,RAD51C ,BRCA1 Protein ,GERMLINE MUTATIONS ,Lynch syndrome ,3. Good health ,DNA-Binding Proteins ,Oncology ,030220 oncology & carcinogenesis ,RNA splicing ,Hereditary Breast and Ovarian Cancer Syndrome ,Female ,RNA Splicing ,Biology ,MLH1 ,inherited breast/ovarian cancer syndrome ,OVARIAN-CANCER ,CLASSIFICATION ,Cancer Genetics and Epigenetics ,03 medical and health sciences ,alternative splicing ,targeted RNA-seq ,BRCA1/2 ,Cell Line, Tumor ,medicine ,UNCLASSIFIED VARIANTS ,Humans ,Genetic Predisposition to Disease ,ASSAYS ,Gene ,BRCA2 Protein ,Sequence Analysis, RNA ,Alternative splicing ,Electrophoresis, Capillary ,medicine.disease ,BRCA1 ,Colorectal Neoplasms, Hereditary Nonpolyposis ,MSH6 ,MSH2 ,Mutation ,ovarian cancer syndrome - Abstract
A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep‐sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA‐seq approach was used to analyse the naturally‐occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non‐BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non‐targeted RNA‐seq approach. We also compared splicing events from lymphoblastoid cell‐lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA‐seq to detect pathogenic changes in RNA‐splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted‐RNA‐seq can be very useful to classify variants based on their putative pathogenic impact on splicing., What's new? Hereditary familial breast/ovarian cancer (HBOC) syndrome involves numerous pathogenic variants, including variants of uncertain clinical significance (VUS). A subset of VUS, however, is suspected to influence RNA splicing, leading to the expression of potentially pathological transcript isoforms. Here, using a targeted RNA‐seq approach, naturally occurring splice isoforms were described for BRCA1/2, RAD51C, RAD51D, and eight additional tumor‐suppressor genes that are associated with HBOC and Lynch syndrome. The targeted RNA‐seq approach also identified aberrant splicing events associated with the presence of BRCA1/2 genetic variants and successfully distinguished complete from incomplete splicing events, which is of major importance in determining pathogenicity.
- Published
- 2019
- Full Text
- View/download PDF
43. High SNP diversity in the non-toxic indigenous Jatropha curcas germplasm widens the potential of this upcoming major biofuel crop species
- Author
-
Arturo Pérez-Vázquez, T De Meyer, Olivier Honnay, O A Valdés-Rodríquez, H. De Kort, Katrien Vandepitte, Odilón Sánchez-Sánchez, Eliseo García-Pérez, J Martinez-Herrera, and Bart Muys
- Subjects
Germplasm ,Genetic diversity ,biology ,Agroforestry ,food and beverages ,Jatropha ,Original Articles ,Plant Science ,biology.organism_classification ,Polymorphism, Single Nucleotide ,Crop ,Biofuels ,Seeds ,Gene pool ,Domestication ,Energy source ,Mexico ,Jatropha curcas ,Genome-Wide Association Study - Abstract
Background and AimsJatropha curcas (jatropha) is an oil crop cultivated in (sub)tropical regions around the world, and holds great promise as a renewable energy source. However, efforts to fully commercialize jatropha are currently hampered by the lack of genetic diversity in the extant breeding germplasm, and by the toxicity of its seeds meaning that its seed cake cannot be used as a protein source in animal feed, among other constraints. In Mexico, the species’ native range, there are jatropha plants whose seeds are used to prepare traditional meals. This non-toxic jatropha ‘type’ is considered to harbour low genetic variation due to a presumed domestication bottleneck and therefore to be of limited breeding value; yet, very little is known regarding its origin and genetic diversity.MethodsUsing genotyping-by-sequencing (GBS), we extensively genotyped both indigenous toxic and non-toxic jatropha collected along roads and home gardens throughout southern Mexico.Key ResultsSingle nucleotide polymorphism diversity in non-toxic jatropha is relatively high, particularly in northern Veracruz state, the probable origin of this germplasm. Genetic differences between toxic and non-toxic indigenous genotypes are overall quite small. A a genome-wide association study supported a genomic region (on LG 8, scaffold NW_012130064), probably involved in the suppression of seed toxicity.ConclusionsConservation actions are urgently needed to preserve this non-toxic indigenous, relatively wild germplasm, having potential as a fuel feedstock, animal feed and food source among other uses. More generally, this work demonstrates the value of conservation genomic research on the indigenous gene pool of economically important plant species.
- Published
- 2019
- Full Text
- View/download PDF
44. Determination of anti-ADAMTS-13 autoantibody titers in ELISA: Influence of ADAMTS-13 presentation and autoantibody detection
- Author
-
Charlotte Dekimpe, Gilles Kaplanski, Kadri Kangro, Hendrik B. Feys, Aline Vandenbulcke, Simon F. De Meyer, Karen Vanhoorelbeke, Elien Roose, Andres Männik, Quintijn Bonnez, Claudia Tersteeg, Edwige Tellier, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Icosagen [Tartumaa, Estonia], Centre recherche en CardioVasculaire et Nutrition = Center for CardioVascular and Nutrition research (C2VN), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Hôpital de la Conception [CHU - APHM] (LA CONCEPTION), and Universiteit Gent = Ghent University (UGENT)
- Subjects
diagnosis ,[SDV]Life Sciences [q-bio] ,Thrombotic thrombocytopenic purpura ,ADAMTS13 Protein ,Enzyme-Linked Immunosorbent Assay ,ADAMTS-13 protein ,Antibodies ,law.invention ,Thrombospondin 1 ,law ,Diagnosis ,Medicine and Health Sciences ,medicine ,Humans ,antibodies ,thrombotic thrombocytopenic purpura ,Autoantibodies ,ADAMTS13 protein ,Thrombospondin ,Purpura, Thrombotic Thrombocytopenic ,biology ,business.industry ,Autoantibody ,Biology and Life Sciences ,Hematology ,medicine.disease ,ADAMTS13 ,Polyclonal antibodies ,Immunology ,Monoclonal ,biology.protein ,Recombinant DNA ,Thrombotic microangiopathies ,thrombotic microangiopathies ,Antibody ,business - Abstract
BACKGROUND: Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is caused by inhibitory and/or clearing anti-ADAMTS-13 (A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats, member 13) autoantibodies. To determine the presence and total level of anti-ADAMTS-13 autoantibodies, commercial and in-house developed ELISAs are performed. However, different ELISA methods vary in relation to the presentation of recombinant (r)ADAMTS-13 and the detection method of the anti-ADAMTS-13 autoantibodies. Currently, the influence of those different approaches on anti-ADAMTS-13 autoantibody titers is not known. OBJECTIVES: To assess the influence of different ADAMTS-13 presentation- and autoantibody detection methods on anti-ADAMTS-13 autoantibody titers in ELISA. MATERIALS/METHODS: Anti-ADAMTS-13 autoantibody titers from 18 iTTP patients were determined using four different set-ups of anti-ADAMTS-13 autoantibody ELISAs. The ELISAs varied in the used presentation of rADAMTS-13 (directly coated full-length rADAMTS-13, directly coated rMDTCS and rT2C2, or antibody-captured full-length rADAMTS-13) and the detection antibodies (polyclonal anti-human IgG or monoclonal anti-human IgG1-4 antibodies). RESULTS: Strong correlations between the different anti-ADAMTS-13 autoantibody ELISA approaches were observed, when using polyclonal anti-human IgG detection antibodies recognizing all IgG subclasses similarly, independent of the method of rADAMTS-13 presentation. Anti-ADAMTS-13 autoantibody titers correlated less when using a mixture of monoclonal anti-human IgG1-4 , because not all IgG subclasses were recognized with similar affinities. CONCLUSION: Anti-ADAMTS-13 autoantibody levels using different methods of rADAMTS-13 presentation strongly correlate. However, the levels of anti-ADAMTS-13 autoantibodies are highly dependent on the detection antibody used, which should detect all IgG subclasses (IgG1-4 ) equally well. ispartof: JOURNAL OF THROMBOSIS AND HAEMOSTASIS vol:19 issue:9 pages:2248-2255 ispartof: location:England status: published
- Published
- 2021
- Full Text
- View/download PDF
45. Looking at the big picture: worldwide population structure and range expansion of the cosmopolitan pest Ceratitis capitata (Diptera, Tephritidae)
- Author
-
Norman B. Barr, Raul Ruiz-Arce, Marc De Meyer, Pablo Deschepper, Terrance N. Todd, and Massimiliano Virgilio
- Subjects
0106 biological sciences ,0301 basic medicine ,Mediterranean climate ,Genetic diversity ,Ecology ,biology ,Range (biology) ,Introduced species ,Ceratitis capitata ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,03 medical and health sciences ,030104 developmental biology ,Population graph Network analysis Modularity Medfly Invasion history ,Tephritidae ,Capitata ,PEST analysis ,Ecology, Evolution, Behavior and Systematics - Abstract
The Mediterranean fruit fly, Ceratitis capitata (Weidemann), is considered one of the most significant tephritid pest species worldwide and is an exotic species in most of its range. Here, we investigated polymorphism at 14 microsatellite loci for a total of 126 populations of C. capitata from six geographical regions, applying network theory and cluster analyses. Analyses revealed nine distinct modules for the Central American region and one in each of the remaining five regions. Bayesian cluster analysis revealed that the highest level of genetic partitioning corresponds with the presence of 3 well-defined genetic clusters. Our results confirm the African origin for Mediterranean populations based on genetic diversity and suggest a direct invasion of C. capitata from the Mediterranean to Central-America. South American populations show links with Central-America, but also exhibit indications of direct admixture with the European cluster. Additionally, the network analysis proposes a South American origin for the Madeiran and Hawaiian flies. Cluster analysis corroborates the hypothesis of a Mediterranean origin for Australian samples. Our work provides novel insights regarding the migration history of Medfly worldwide.
- Published
- 2021
46. The RNA Atlas expands the catalog of human non-coding RNAs
- Author
-
Eric James de Bony, Aidan P. Tay, Justine Nuytens, Steve Lefever, Tim De Meyer, Marieke Vromman, Pieter Mestdagh, Tine Goovaerts, Nandan P. Deshpande, Stephen M. Gross, Katleen De Preter, Lucia Lorenzi, Jo Vandesompele, Nele Nijs, Pieter-Jan Volders, Jørgen Kjems, Scott Kuersten, Pavel Sumazin, Francisco Avila Cobos, Wim Trypsteen, Jasper Anckaert, Katrien Vanderheyden, Govardhan Anande, Marc R. Wilkins, Ken R. Bracke, Ting-Wen Chen, Robrecht Cannoodt, Tom Taghon, Yvan Saeys, Thomas B. Hansen, Fien Gysens, Hua-Sheng Chiu, Jan Koster, Karim Vermaelen, Gary P. Schroth, Ashwin Unnikrishnan, Oncogenomics, and CCA - Cancer biology and immunology
- Subjects
RNA, Untranslated ,Polyadenylation ,Total rna ,Biomedical Engineering ,Bioengineering ,Computational biology ,Biology ,Applied Microbiology and Biotechnology ,Transcriptome ,03 medical and health sciences ,0302 clinical medicine ,microRNA ,Humans ,RNA, Messenger ,Gene ,030304 developmental biology ,0303 health sciences ,RNA ,Non-coding RNA ,MicroRNAs ,Molecular Medicine ,RNA, Long Noncoding ,030217 neurology & neurosurgery ,Function (biology) ,Biotechnology - Abstract
Existing compendia of non-coding RNA (ncRNA) are incomplete, in part because they are derived almost exclusively from small and polyadenylated RNAs. Here we present a more comprehensive atlas of the human transcriptome, which includes small and polyA RNA as well as total RNA from 300 human tissues and cell lines. We report thousands of previously uncharacterized RNAs, increasing the number of documented ncRNAs by approximately 8%. To infer functional regulation by known and newly characterized ncRNAs, we exploited pre-mRNA abundance estimates from total RNA sequencing, revealing 316 microRNAs and 3,310 long non-coding RNAs with multiple lines of evidence for roles in regulating protein-coding genes and pathways. Our study both refines and expands the current catalog of human ncRNAs and their regulatory interactions. All data, analyses and results are available for download and interrogation in the R2 web portal, serving as a basis for future exploration of RNA biology and function.
- Published
- 2021
- Full Text
- View/download PDF
47. Serum Corticosterone and Insulin Resistance as Early Biomarkers in the hAPP23 Overexpressing Mouse Model of Alzheimer's Disease
- Author
-
Guido R.Y. De Meyer, Jhana O. Hendrickx, Debby Van Dam, Peter Paul De Deyn, Lynn Roth, Sofie De Moudt, Wim Martinet, Pieter-Jan Guns, Elke Calus, and Molecular Neuroscience and Ageing Research (MOLAR)
- Subjects
0301 basic medicine ,Male ,medicine.medical_treatment ,Morris water navigation task ,chemistry.chemical_compound ,Amyloid beta-Protein Precursor ,Mice ,0302 clinical medicine ,Corticosterone ,insulin resistance ,hypermetabolism ,Medicine ,Glucose homeostasis ,Insulin ,Biology (General) ,Cognitive decline ,BRAIN ,Cushing Syndrome ,Spectroscopy ,RISK ,DEMENTIA ,General Medicine ,Alzheimer's disease ,Computer Science Applications ,Chemistry ,Hypermetabolism ,CUSHINGS-SYNDROME ,Alzheimer’s disease ,APP23 ,medicine.medical_specialty ,AMYLOID-PRECURSOR-PROTEIN ,QH301-705.5 ,Mice, Transgenic ,Catalysis ,Article ,Inorganic Chemistry ,03 medical and health sciences ,Insulin resistance ,Alzheimer Disease ,Internal medicine ,Animals ,Cognitive Dysfunction ,Physical and Theoretical Chemistry ,QD1-999 ,Biology ,Molecular Biology ,hypercortisolism ,business.industry ,CORTISOL ,Organic Chemistry ,medicine.disease ,COGNITIVE IMPAIRMENT ,cognitive decline ,DYSFUNCTION ,Mice, Inbred C57BL ,Disease Models, Animal ,030104 developmental biology ,Endocrinology ,chemistry ,A-BETA-DEPOSITION ,Human medicine ,business ,030217 neurology & neurosurgery ,Biomarkers ,Hormone - Abstract
Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer’s disease (AD). As insulin resistance can be caused by high-stress hormone levels and since hypercortisolism appears to be an important risk factor of AD, we aimed to investigate the systemic insulin functionality and circulating stress hormone levels in a mutant humanized amyloid precursor protein (APP) overexpressing (hAPP23+/−) AD mouse model. Memory and spatial learning of male hAPP23+/− and C57BL/6 (wild type, WT) mice were assessed by a Morris Water Maze (MWM) test at the age of 4 and 12 months. The systemic metabolism was examined by intraperitoneal glucose and insulin tolerance tests (GTT, ITT). Insulin and corticosterone levels were determined in serum. In the hippocampus, parietal and occipital cortex of hAPP23+/− brains, amyloid-beta (Aβ) deposits were present at 12 months of age. MWM demonstrated a cognitive decline in hAPP23+/− mice at 12 but not at 4 months, evidenced by increasing total path lengths and deteriorating probe trials compared to WT mice. hAPP23+/− animals presented increased serum corticosterone levels compared to WT mice at both 4 and 12 months. hAPP23+/− mice exhibited peripheral insulin resistance compared to WT mice at 4 months, which stabilized at 12 months of age. Serum insulin levels were similar between genotypes at 4 months of age but were significantly higher in hAPP23+/− mice at 12 months of age. Peripheral glucose homeostasis remained unchanged. These results indicate that peripheral insulin resistance combined with elevated circulating stress hormone levels could be potential biomarkers of the pre-symptomatic phase of AD.
- Published
- 2021
48. Concurrent invasions by European starlings (Sturnus vulgaris) suggest selection on shared genomic regions even after genetic bottlenecks
- Author
-
T De Meyer, D. F. Clayton, David W. Burt, Simone Meddle, Phillip Cassey, Lee A. Rollins, Scott J. Werner, William B. Sherwin, Adam P. A. Cardilini, Katarina C. Stuart, Gregory F. Ball, Craig D. H. Sherman, Katherine L. Buchanan, Melissa Bateson, Jimin George, Natalie R. Hofmeister, H. M. Rowland, Wesley C. Warren, and W. Van Den Berghe
- Subjects
Sturnus ,biology ,Evolutionary biology ,Starling ,biology.organism_classification ,Selection (genetic algorithm) ,Adaptive evolution ,Local adaptation - Abstract
A species’ success during the invasion of new areas hinges on an interplay between demographic processes and the outcome of localized selection. Invasive European Starlings (Sturnus vulgaris) established populations in Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European Starling populations from three continents to determine how demographic processes interact with rapid adaptive evolution to generate similar genetic patterns in these recent and replicated invasions. Our results confirm that a post-bottleneck expansion may in fact support local adaptation. We find that specific genomic regions have differentiated even on this short evolutionary timescale, and suggest that selection best explains differentiation in at least two of these regions. This infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors), perhaps in part due to the demographic boom intrinsic to many invasions.
- Published
- 2021
- Full Text
- View/download PDF
49. Identification of DNA methylation markers for early detection of CRC indicates a role for nervous system-related genes in CRC
- Author
-
Tim De Meyer, Kim M. Smits, Veerle Melotte, James G. Herman, Beatriz Carvalho, Alexander Koch, Gerrit A. Meijer, Kim A.D. Wouters, Nathalie Vaes, Glenn Rademakers, Maartje Massen, Manon van Engeland, Nikkie Buekers, Muriel X. G. Draht, Clinical Genetics, Pathologie, and RS: GROW - R2 - Basic and Translational Cancer Biology
- Subjects
0301 basic medicine ,Central Nervous System ,Epigenomics ,Male ,Nervous system ,Colorectal cancer ,In silico ,Computational biology ,Biology ,Sensitivity and Specificity ,Epigenesis, Genetic ,Biological pathway ,03 medical and health sciences ,0302 clinical medicine ,SDG 3 - Good Health and Well-being ,Medicine and Health Sciences ,Genetics ,medicine ,Biomarkers, Tumor ,Humans ,Epigenetics ,Promoter Regions, Genetic ,Molecular Biology ,Gene ,Genetics (clinical) ,Early Detection of Cancer ,Aged ,DNA methylation ,In silico discovery ,Research ,Biology and Life Sciences ,Reproducibility of Results ,Diagnostic markers ,Middle Aged ,medicine.disease ,Human genetics ,030104 developmental biology ,030220 oncology & carcinogenesis ,Marker Discovery ,Female ,Colorectal Neoplasms ,Developmental Biology - Abstract
Purpose Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to DNA methylation. Methods DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adenocarcinoma data set consisting of normal and primary colon adenocarcinoma tissue. The performance of the five best candidate markers and a previously identified marker, NDRG4, was evaluated on tissues and whole stool samples of healthy subjects and CRC patients using quantitative MSP assays. The results were compared and combined with FIT data. Finally, pathway and gene ontology enrichment analyses were performed using ToppFun, GOrilla and clusterProfiler. Results GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 were ranked as the best performing markers. Gene combinations of all five markers, NDRG4 and FIT were evaluated to establish the biomarker panel with the highest diagnostic potential, resulting in the identification of GDNF/SNAP91/NDRG4/FIT as the best performing marker panel. Pathway and gene ontology enrichment analyses revealed that genes associated with the nervous system were enriched in the set of best performing CRC-specific biomarkers. Conclusion In silico discovery analysis using TCGA-derived data yielded a novel DNA-methylation-based assay for the early detection of CRC, potentially improving current screening modalities. Additionally, nervous system-related pathways were enriched in the identified genes, indicating an epigenetic regulation of neuronal genes in CRC.
- Published
- 2021
50. Transcript- and annotation-guided genome assembly of the European starling
- Author
-
Simone Meddle, William B. Sherwin, Phillip Cassey, Matthew C. Brandley, Scott J. Werner, Melissa Bateson, Katarina C. Stuart, Lee A. Rollins, D. F. Clayton, Tim De Meyer, Richard Edwards, Katherine L. Buchanan, Gregory F. Ball, Natalie R. Hofmeister, David W. Burt, Yuanyuan Cheng, and Wesley C. Warren
- Subjects
Sturnus vulgaris ,genome annotation ,assessment ,Population ,Sequence assembly ,Genomics ,Computational biology ,Biology ,full-length transcripts ,Genome ,Transcriptome ,Genetics ,Animals ,education ,genome ,Zebra finch ,Ecology, Evolution, Behavior and Systematics ,education.field_of_study ,Australia ,Biology and Life Sciences ,Molecular Sequence Annotation ,Gene Annotation ,STURNUS-VULGARIS ,PAN-GENOME ,genome assessment ,EVOLUTION ,INSIGHTS ,DISCOVERY ,Starlings ,POPULATION TRENDS ,genome assembly ,VISUALIZATION ,Nanopore sequencing ,Biotechnology - Abstract
The European starling, Sturnus vulgaris, is an ecologically significant, globally invasive avian species that is also suffering from a major decline in its native range. Here, we present the genome assembly and long-read transcriptome of an Australian-sourced European starling (S. vulgaris vAU), and a second North American genome (S. vulgaris vNA), as complementary reference genomes for population genetic and evolutionary characterisation. S. vulgaris vAU combined 10x Genomics linked-reads, low-coverage Nanopore sequencing, and PacBio Iso-Seq full-length transcript scaffolding to generate a 1050 Mb assembly on 1,628 scaffolds (72.5 Mb scaffold N50). Species-specific transcript mapping and gene annotation revealed high structural and functional completeness (94.6% BUSCO completeness). Further scaffolding against the high-quality zebra finch (Taeniopygia guttata) genome assigned 98.6% of the assembly to 32 putative nuclear chromosome scaffolds. Rapid, recent advances in sequencing technologies and bioinformatics software have highlighted the need for evidence-based assessment of assembly decisions on a case-by-case basis. Using S. vulgaris vAU, we demonstrate how the multifunctional use of PacBio Iso-Seq transcript data and complementary homology-based annotation of sequential assembly steps (assessed using a new tool, SAAGA) can be used to assess, inform, and validate assembly workflow decisions. We also highlight some counter-intuitive behaviour in traditional BUSCO metrics, and present Buscomp, a complementary tool for assembly comparison designed to be robust to differences in assembly size and base-calling quality. Finally, we present a second starling assembly, S. vulgaris vNA, to facilitate comparative analysis and global genomic research on this ecologically important species.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.