1. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma
- Author
-
Jessica Hossa, Giulia Costanza Leonardi, Chiara Ambrogio, Taek-Chin Cheong, Ines Mota, Qi Wang, Cinzia Martinengo, Roberto Chiarle, Birgit Geoerger, Luca Mologni, Carlo Gambacorti-Passerini, Laurence Brugières, Elif Karaca-Atabay, Achille Pich, Nina Prokoph, Carmen Mecca, Suzanne D. Turner, Claudia Voena, Enrico Patrucco, Giulia Mura, Karaca Atabay, E, Mecca, C, Wang, Q, Ambrogio, C, Mota, I, Prokoph, N, Mura, G, Martinengo, C, Patrucco, E, Leonardi, G, Hossa, J, Pich, A, Mologni, L, Gambacorti Passerini, C, Brugieres, L, Geoerger, B, Turner, S, Voena, C, Cheong, T, Chiarle, R, Mecca, Carmen [0000-0002-6770-5094], Wang, Qi [0000-0002-4306-3293], Ambrogio, Chiara [0000-0003-4122-701X], Mota, Ines [0000-0003-1523-7134], Prokoph, Nina [0000-0002-6429-9895], Patrucco, Enrico [0000-0001-8060-5058], Pich, Achille [0000-0003-3175-7797], Mologni, Luca [0000-0002-6365-5149], Gambacorti-Passerini, Carlo [0000-0001-6058-515X], Brugières, Laurence [0000-0002-7798-6651], Voena, Claudia [0000-0002-1324-1431], Cheong, Taek-Chin [0000-0002-0939-9412], Chiarle, Roberto [0000-0003-1564-8531], and Apollo - University of Cambridge Repository
- Subjects
Immunology ,Antineoplastic Agents ,Mice, SCID ,Biochemistry ,03 medical and health sciences ,0302 clinical medicine ,Crizotinib ,Downregulation and upregulation ,Mice, Inbred NOD ,Cell Line, Tumor ,hemic and lymphatic diseases ,anaplastic large cell lymphoma, ALK+, TKIs, STAT3, PTPN1, Tyrosine phosphatase ,medicine ,Animals ,Humans ,Anaplastic lymphoma kinase ,Anaplastic Lymphoma Kinase ,STAT3 ,Protein Kinase Inhibitors ,Anaplastic large-cell lymphoma ,030304 developmental biology ,Protein Tyrosine Phosphatase, Non-Receptor Type 1 ,Protein Tyrosine Phosphatase, Non-Receptor Type 2 ,0303 health sciences ,Lymphoid Neoplasia ,biology ,Chemistry ,Cell Biology ,Hematology ,medicine.disease ,respiratory tract diseases ,3. Good health ,030220 oncology & carcinogenesis ,biology.protein ,Cancer research ,Lymphoma, Large-Cell, Anaplastic ,Phosphorylation ,PTPN1 ,Tyrosine kinase ,medicine.drug - Abstract
Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.
- Published
- 2022