1. Whole-Genome Data from Curtobacterium flaccumfaciens pv. flaccumfaciens Strains Associated with Tan Spot of Mungbean and Soybean Reveal Diverse Plasmid Profiles
- Author
-
Anthony Young, Dante Adorada, Barsha Poudel, Adam H. Sparks, Lauren Huth, Niloofar Vaghefi, and Lisa Kelly
- Subjects
Genetics ,education.field_of_study ,biology ,Physiology ,Bacterial wilt ,Population ,Microevolution ,General Medicine ,biology.organism_classification ,Genome ,Curtobacterium flaccumfaciens ,Population genomics ,Plasmid ,education ,Agronomy and Crop Science ,Reference genome - Abstract
Despite the substantial economic impact of Curtobacterium flaccumfaciens pv. flaccumfaciens on legume production worldwide, the genetic basis of its pathogenicity and potential host association is poorly understood. The production of high-quality reference genome assemblies of C. flaccumfaciens pv. flaccumfaciens strains associated with different hosts sheds light on the genetic basis of its pathogenic variability and host association. Moreover, the study of recent outbreaks of bacterial wilt and microevolution of the pathogen in Australia requires access to high-quality reference genomes that are sufficiently closely related to the population being studied within Australia. We provide the first genome assemblies of C. flaccumfaciens pv. flaccumfaciens strains associated with mungbean and soybean, which revealed high variability in their plasmid composition. The analysis of C. flaccumfaciens pv. flaccumfaciens genomes revealed an extensive suite of carbohydrate-active enzymes potentially associated with pathogenicity, including four carbohydrate esterases, 50 glycoside hydrolases, 23 glycosyl transferases, and a polysaccharide lyase. We also identified 11 serine peptidases, three of which were located within a linear plasmid, pCff119. These high-quality assemblies and annotations will provide a foundation for population genomics studies of C. flaccumfaciens pv. flaccumfaciens in Australia and for answering fundamental questions regarding pathogenicity factors and adaptation of C. flaccumfaciens pv. flaccumfaciens to various hosts worldwide and, at a broader scale, contribute to unraveling genomic features of gram-positive, xylem-inhabiting bacterial pathogens. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
- Published
- 2021