1. Differential activity and selectivity of N‐terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors
- Author
-
Carmen Gallego, Françoise Bachelerie, Françoise Baleux, Erika Cecon, Agnieszka Jaracz-Ros, Pasquale Cutolo, Angélique Levoye, Irina Kufareva, Guillaume Bernadat, Martin Gustavsson, Tracy M. Handel, Inflammation, microbiome, immunosurveillance (MI2), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Biomolécules : Conception, Isolement, Synthèse (BioCIS), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Skaggs School of Pharmacy and Pharmaceutical Sciences [San Diego], University of California [San Diego] (UC San Diego), University of California-University of California, Institut Cochin (IC UM3 (UMR 8104 / U1016)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Chimie des Biomolécules - Chemistry of Biomolecules, Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Paris-Centre de Recherche Cardiovasculaire (PARCC (UMR_S 970/ U970)), Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Université Sorbonne Paris Nord, This work was supported by grants from Ensemble Contre le SIDA (SIDACTION), the Institut National de la Santé et de la Recherche Médicale (INSERM), GIS-Network for Rare Diseases and the Agence Nationale de Recherches sur le SIDA (ANRS). We thank members of the Dr. F. Arenzana-Seisdedos laboratory (Laboratoire de Pathogénie Virale, Institut Pasteur, Paris, France) and Dr. R. Jockers (Institut Cochin, Paris, France), who provided critical discussion. We also thank E. Trinquet, N. Gregor and F. Maurin (CisBio International, Marcoule, France) for technical support in HTRF assays. AL was supported by Roux postdoctoral fellowship from Pasteur Institute. I.K. and T.M.H. are supported by NIH R01 grants AI118985 and GM117424. C.G. was beneficiary of a fellowship from Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN) 'ONCOgenic Receptor Network of Excellence and Training' (MSCA-ITN-2014-ETN) and from Fondation pour la Recherche Médicale (FDT201805005700). A.J-R., P.C., C.G., and F. Bachelerie are members of the LabEx LERMIT supported by ANR grant (ANR-10-LABX-33) under the program 'Investissements d'Avenir' (ANR-11-IDEX-0003-01)., ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011), ANR-10-LABX-0033,LERMIT,Research Laboratory on Drugs and Therapeutic Innovation(2010), European Project: 641833,H2020,H2020-MSCA-ITN-2014,ONCORNET(2015), University of California (UC)-University of California (UC), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Baleux, Françoise, Idex Paris-Saclay - - IPS2011 - ANR-11-IDEX-0003 - IDEX - VALID, Research Laboratory on Drugs and Therapeutic Innovation - - LERMIT2010 - ANR-10-LABX-0033 - LABX - VALID, and ONCOgenic Receptor Network of Excellence and Training - ONCORNET - - H20202015-01-01 - 2018-12-31 - 641833 - VALID
- Subjects
0301 basic medicine ,Protein Conformation, alpha-Helical ,ACKR3 ,Chemokine ,Benzylamines ,Protein Conformation ,[SDV]Life Sciences [q-bio] ,Gene Expression ,pluridimensional efficacy Receptors ,MESH: Amino Acid Sequence ,Cyclams ,CXCR4 ,MESH: Recombinant Proteins ,Chemokine receptor ,0302 clinical medicine ,Heterocyclic Compounds ,GPCR signaling ,Receptors ,Cyclic AMP ,2.1 Biological and endogenous factors ,Immunology and Allergy ,MESH: Molecular Dynamics Simulation ,Aetiology ,CXCR ,Receptor ,beta-Arrestins ,MESH: Cyclic AMP ,biology ,MESH: Receptors, CXCR ,CXCL12 ,Recombinant Proteins ,Cell biology ,[SDV] Life Sciences [q-bio] ,pluridimensional efficacy ,030220 oncology & carcinogenesis ,MESH: HEK293 Cells ,embryonic structures ,MESH: Oligopeptides ,MESH: Protein Conformation, beta-Strand ,biological phenomena, cell phenomena, and immunity ,MESH: Chemokine CXCL12 ,Selectivity ,chemokine variants ,MESH: Chemokine CXCL11 ,Oligopeptides ,Biotechnology ,Protein Binding ,Agonist ,Receptors, CXCR4 ,MESH: Mutation ,MESH: Gene Expression ,MESH: Heterocyclic Compounds ,medicine.drug_class ,Signal Transduction and Genes ,1.1 Normal biological development and functioning ,Immunology ,Molecular Dynamics Simulation ,Article ,MESH: Receptors, CXCR4 ,GPCR Signaling ,Vaccine Related ,03 medical and health sciences ,MESH: beta-Arrestins ,Underpinning research ,Biodefense ,medicine ,Humans ,MESH: Protein Binding ,Protein Interaction Domains and Motifs ,Amino Acid Sequence ,Receptors, CXCR ,MESH: Protein Conformation, alpha-Helical ,MESH: Protein Interaction Domains and Motifs ,Binding Sites ,MESH: Humans ,Prevention ,alpha-Helical ,Cell Biology ,biological factors ,Chemokine CXCL12 ,Chemokine CXCL11 ,Emerging Infectious Diseases ,030104 developmental biology ,HEK293 Cells ,MESH: Binding Sites ,Mutation ,biology.protein ,beta-Strand ,Protein Conformation, beta-Strand ,Biochemistry and Cell Biology - Abstract
Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors’ TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2–4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.
- Published
- 2020
- Full Text
- View/download PDF