1. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review.
- Author
-
Munir R, Zahoor AF, Javed S, Parveen B, Mansha A, Irfan A, Khan SG, Irfan A, Kotwica-Mojzych K, and Mojzych M
- Subjects
- Cyclization, Nucleosides, Cyclopropanes chemistry, Biological Products chemistry, Alkaloids chemistry
- Abstract
Simmons-Smith cyclopropanation is a widely used reaction in organic synthesis for stereospecific conversion of alkenes into cyclopropane. The utility of this reaction can be realized by the fact that the cyclopropane motif is a privileged synthetic intermediate and a core structural unit of many biologically active natural compounds such as terpenoids, alkaloids, nucleosides, amino acids, fatty acids, polyketides and drugs. The modified form of Simmons-Smith cyclopropanation involves the employment of Et
2 Zn and CH2 I2 (Furukawa reagent) toward the total synthesis of a variety of structurally complex natural products that possess broad range of biological activities including anticancer, antimicrobial and antiviral activities. This review aims to provide an intriguing glimpse of the Furukawa-modified Simmons-Smith cyclopropanation, within the year range of 2005 to 2022.- Published
- 2023
- Full Text
- View/download PDF