10 results on '"Carlson, Erin E."'
Search Results
2. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.
- Author
-
Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, P CAB, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O'Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, and Bandeira N
- Subjects
- Database Management Systems, Information Storage and Retrieval methods, Internationality, Biological Products chemistry, Biological Products classification, Data Curation methods, Databases, Chemical, Information Dissemination methods, Mass Spectrometry statistics & numerical data
- Abstract
The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.
- Published
- 2016
- Full Text
- View/download PDF
3. Collision-Induced Dissociation Mass Spectrometry: A Powerful Tool for Natural Product Structure Elucidation.
- Author
-
Johnson AR and Carlson EE
- Subjects
- Aminoglycosides chemistry, Molecular Structure, Biological Products chemistry, Chemistry Techniques, Analytical instrumentation, Mass Spectrometry
- Abstract
Mass spectrometry is a powerful tool in natural product structure elucidation, but our ability to directly correlate fragmentation spectra to these structures lags far behind similar efforts in peptide sequencing and proteomics. Often, manual data interpretation is required and our knowledge of the expected fragmentation patterns for many scaffolds is limited, further complicating analysis. Here, we summarize advances in natural product structure elucidation based upon the application of collision induced dissociation fragmentation mechanisms.
- Published
- 2015
- Full Text
- View/download PDF
4. Chemoselective enrichment as a tool to increase access to bioactive natural products: Case study borrelidin.
- Author
-
Trader DJ and Carlson EE
- Subjects
- Fatty Alcohols chemistry, Fatty Alcohols isolation & purification, Molecular Structure, Biological Products chemistry, Biological Products isolation & purification
- Abstract
Chemoselective purification technologies have seen great success in biomolecule isolation, with a classic example being the genetically-encoded His tag utilized to enrich desired proteins from a crude lysate. We sought to translate this purification tactic into a powerful tool for the isolation of natural products and demonstrate that chemoselective enrichment can reduce the number of purification steps required and increase the yield obtained for important natural products, as compared to the use of traditional chromatography methods alone. To date, we have reported reversible enrichment tags for three functional groups, carboxylic acids and aliphatic or aryl hydroxyls. To illustrate the power of chemoselectivity-mediated purification of natural products, we present here an improved isolation of borrelidin. Application of our carboxylic acid tag yielded pure borrelidin in only two steps and with double the yield acquired with traditional chromatography methods. These results highlight the utility of this orthogonal strategy to facilitate the isolation of natural products, which are often present in minute quantities in their source materials., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
5. A reinvigorated era of bacterial secondary metabolite discovery.
- Author
-
Sidebottom AM and Carlson EE
- Subjects
- Bacteria chemistry, Bacteria genetics, Biological Products chemistry, Genomics methods, Bacteria metabolism, Biological Products metabolism, Mass Spectrometry methods, Metabolomics methods
- Abstract
Secondary metabolite discovery from bacteria has become increasingly successful in the last decade due to the advancement of integrated genetic-based, spectrometric-based and informatics-based techniques. Microbes and their unique metabolic outputs have been widely studied since the beginning of modern medicine; however, it is well known that the current repertoire of secondary metabolites, or more commonly natural products, is incomplete and the understanding of natural product-mediated intracellular dialog is in its infancy. Here, we highlight the present state of bacterial metabolomics including compound discovery approaches and new strategies for probing the role of these molecules within communication networks., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
6. Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145.
- Author
-
Sidebottom AM, Johnson AR, Karty JA, Trader DJ, and Carlson EE
- Subjects
- Biological Products isolation & purification, Biological Products metabolism, Hydroxamic Acids chemistry, Hydroxamic Acids isolation & purification, Hydroxamic Acids metabolism, Mass Spectrometry methods, Siderophores isolation & purification, Siderophores metabolism, Streptomyces coelicolor metabolism, Biological Products chemistry, Drug Discovery methods, Metabolome, Metabolomics methods, Siderophores chemistry, Streptomyces coelicolor chemistry
- Abstract
Natural products exhibit a broad range of biological properties and have been a crucial source of therapeutic agents and novel scaffolds. Although bacterial secondary metabolomes are widely explored, they remain incompletely cataloged by current isolation and characterization strategies. To identify metabolites residing in unexplored chemical space, we have developed an integrated discovery approach that combines bacterial growth perturbation, accurate mass spectrometry, comparative mass spectra data analysis, and fragmentation spectra clustering for the identification of low-abundant, novel compounds from complex biological matrices. In this investigation, we analyzed the secreted metabolome of the extensively studied Actinomycete, Streptomyces coelicolor M145, and discovered a low-abundant suite of 15 trihydroxamate, amphiphilic siderophores. Compounds in this class have primarily been observed in marine microorganisms making their detection in the soil-dwelling S. coelicolor M145 significant. At least 10 of these ferrioxamine-based molecules are not known to be produced by any organism, and none have previously been detected from S. coelicolor M145. In addition, we confirmed the production of ferrioxamine D1, a relatively hydrophilic family member that has not been shown to be biosynthesized by this organism. The identified molecules are part of only a small list of secondary metabolites that have been discovered since sequencing of S. coelicolor M145 revealed that it possessed numerous putative secondary metabolite-producing gene clusters with no known metabolites. Thus, the identified siderophores represent the unexplored metabolic potential of both well-studied and new organisms that could be uncovered with our sensitive and robust approach.
- Published
- 2013
- Full Text
- View/download PDF
7. Taming of a superbase for selective phenol desilylation and natural product isolation.
- Author
-
Trader DJ and Carlson EE
- Subjects
- Biological Products chemistry, Molecular Structure, Organosilicon Compounds chemistry, Temperature, Biological Products isolation & purification, Guanidines chemistry, Organosilicon Compounds chemical synthesis, Phenols chemistry
- Abstract
Hydroxyl moieties are highly prevalent in natural products. We previously reported a chemoselective strategy for enrichment of hydroxyl-functionalized molecules by formation of a silyl ether bond to a resin. To generate smaller pools of molecules for analysis, we developed cleavage conditions to promote stepwise release of phenolic silyl ethers followed by aliphatic silyl ethers with a "tamed" version of the superbase 1,1,3,3-tetramethylguanadine. We demonstrate this as a general strategy for selective deprotection of phenolic silyl ethers under neutral conditions at room temperature.
- Published
- 2013
- Full Text
- View/download PDF
8. Chemoselective hydroxyl group transformation: an elusive target.
- Author
-
Trader DJ and Carlson EE
- Subjects
- Acylation, Alcohols chemistry, Amines chemistry, Molecular Structure, Oxidation-Reduction, Static Electricity, Tyrosine chemistry, Water chemistry, Biological Products chemistry, Hydroxides chemistry, Proteins chemistry
- Abstract
The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described.
- Published
- 2012
- Full Text
- View/download PDF
9. Natural products as chemical probes.
- Author
-
Carlson EE
- Subjects
- Affinity Labels, Biochemical Phenomena, Biological Phenomena, Biological Products chemistry, Biological Products isolation & purification, Biological Products metabolism, Chromatography, Liquid, Drug Resistance, Microbial, Enzymes metabolism, Mass Spectrometry, Molecular Probes, Proteomics, Small Molecule Libraries metabolism, Biological Products pharmacology, Drug Design
- Abstract
Natural products have evolved to encompass a broad spectrum of chemical and functional diversity. It is this diversity, along with their structural complexity, that enables nature's small molecules to target a nearly limitless number of biological macromolecules and to often do so in a highly selective fashion. Because of these characteristics, natural products have seen great success as therapeutic agents. However, this vast pool of compounds holds much promise beyond the development of future drugs. These features also make them ideal tools for the study of biological systems. Recent examples of the use of natural products and their derivatives as chemical probes to explore biological phenomena and assemble biochemical pathways are presented here.
- Published
- 2010
- Full Text
- View/download PDF
10. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking
- Author
-
Wang, Mingxun, Carver, Jeremy J, Phelan, Vanessa V, Sanchez, Laura M, Garg, Neha, Peng, Yao, Nguyen, Don Duy, Watrous, Jeramie, Kapono, Clifford A, Luzzatto-Knaan, Tal, Porto, Carla, Bouslimani, Amina, Melnik, Alexey V, Meehan, Michael J, Liu, Wei-Ting, Crüsemann, Max, Boudreau, Paul D, Esquenazi, Eduardo, Sandoval-Calderón, Mario, Kersten, Roland D, Pace, Laura A, Quinn, Robert A, Duncan, Katherine R, Hsu, Cheng-Chih, Floros, Dimitrios J, Gavilan, Ronnie G, Kleigrewe, Karin, Northen, Trent, Dutton, Rachel J, Parrot, Delphine, Carlson, Erin E, Aigle, Bertrand, Michelsen, Charlotte F, Jelsbak, Lars, Sohlenkamp, Christian, Pevzner, Pavel, Edlund, Anna, McLean, Jeffrey, Piel, Jörn, Murphy, Brian T, Gerwick, Lena, Liaw, Chih-Chuang, Yang, Yu-Liang, Humpf, Hans-Ulrich, Maansson, Maria, Keyzers, Robert A, Sims, Amy C, Johnson, Andrew R, Sidebottom, Ashley M, Sedio, Brian E, Klitgaard, Andreas, Larson, Charles B, P, Cristopher A Boya, Torres-Mendoza, Daniel, Gonzalez, David J, Silva, Denise B, Marques, Lucas M, Demarque, Daniel P, Pociute, Egle, O'Neill, Ellis C, Briand, Enora, Helfrich, Eric JN, Granatosky, Eve A, Glukhov, Evgenia, Ryffel, Florian, Houson, Hailey, Mohimani, Hosein, Kharbush, Jenan J, Zeng, Yi, Vorholt, Julia A, Kurita, Kenji L, Charusanti, Pep, McPhail, Kerry L, Nielsen, Kristian Fog, Vuong, Lisa, Elfeki, Maryam, Traxler, Matthew F, Engene, Niclas, Koyama, Nobuhiro, Vining, Oliver B, Baric, Ralph, Silva, Ricardo R, Mascuch, Samantha J, Tomasi, Sophie, Jenkins, Stefan, Macherla, Venkat, Hoffman, Thomas, Agarwal, Vinayak, Williams, Philip G, Dai, Jingqui, Neupane, Ram, Gurr, Joshua, Rodríguez, Andrés MC, Lamsa, Anne, Zhang, Chen, Dorrestein, Kathleen, Duggan, Brendan M, Almaliti, Jehad, Allard, Pierre-Marie, and Phapale, Prasad
- Subjects
Biological Products ,Databases ,Internationality ,Information Dissemination ,Database Management Systems ,Information Storage and Retrieval ,Chemical ,Generic health relevance ,Mass Spectrometry ,Data Curation - Abstract
The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.