1. Ancient developmental genes underlie evolutionary novelties in walking fish.
- Author
-
Herbert AL, Allard CAH, McCoy MJ, Wucherpfennig JI, Krueger SP, Chen HI, Gourlay AN, Jackson KD, Abbo LA, Bennett SH, Sears JD, Rhyne AL, Bellono NW, and Kingsley DM
- Subjects
- Animals, Fish Proteins genetics, Fish Proteins metabolism, Genes, Developmental genetics, T-Box Domain Proteins genetics, T-Box Domain Proteins metabolism, Extremities growth & development, Gene Expression Regulation, Developmental, Walking, Biological Evolution
- Abstract
A critical question in biology is how new traits evolve, but studying this in wild animals remains challenging. Here, we probe the genetic basis of trait gain in sea robin fish, which have evolved specialized leg-like appendages for locomotion and digging along the ocean floor. We use genome sequencing, transcriptional profiling, and interspecific hybrid analysis to explore the molecular and developmental basis of leg formation. We identified the ancient, conserved transcription factor tbx3a as a major determinant of sensory leg development. Genome editing confirms that tbx3a is required for normal leg formation in sea robins, and for formation of enlarged central nervous system lobes, sensory papillae, and adult digging behavior. Our study establishes sea robins as a model organism for studying the evolution of major trait gain and illustrates how ancient developmental control genes can underlie novel organ formation., Competing Interests: Declaration of interests The authors declare that they have no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF