1. Network Pharmacology Approaches for Understanding Traditional Chinese Medicine
- Author
-
Wang, Yinyin, University of Helsinki, Faculty of Biological and Environmental Sciences, Doctoral Programme in Integrative Life Science, Helsingin yliopisto, bio- ja ympäristötieteellinen tiedekunta, Integroivien biotieteiden tohtoriohjelma, Helsingfors universitet, bio- och miljövetenskapliga fakulteten, Doktorandprogrammet i integrerande biovetenskap, Cheng, Feixiong, and Tang, Jing
- Subjects
bioinformatics - Abstract
Traditional Chinese medicine (TCM) has obvious efficacy on disease treatments and is a valuable source for novel drug discovery. However, the underlying mechanism of the pharmacological effects of TCM remains unknown because TCM is a complex system with multiple herbs and ingredients coming together as a prescription. Therefore, it is urgent to apply computational tools to TCM to understand the underlying mechanism of TCM theories at the molecular level and use advanced network algorithms to explore potential effective ingredients and illustrate the principles of TCM in system biological aspects. In this thesis, we aim to understand the underlying mechanism of actions in complex TCM systems at the molecular level by bioinformatics and computational tools. In study Ⅰ, a machine learning framework was developed to predict the meridians of the herbs and ingredients. Finally, we achieved high accuracy of the meridians prediction for herbs and ingredients, suggesting an association between meridians and the molecular features of ingredients and herbs, especially the most important features for machine learning models. Secondly, we proposed a novel network approach to study the TCM formulae by quantifying the degree of interactions of pairwise herb pairs in study Ⅱ using five network distance methods, including the closest, shortest, central, kernel, as well as separation. We demonstrated that the distance of top herb pairs is shorter than that of random herb pairs, suggesting a strong interaction in the human interactome. In addition, center methods at the ingredient level outperformed the other methods. It hints to us that the central ingredients play an important role in the herbs. Thirdly, we explored the associations between herbs or ingredients and their important biological characteristics in study III, such as properties, meridians, structures, or targets via clusters from community analysis of the multipartite network. We found that herbal medicines among the same clusters tend to be more similar in the properties, meridians. Similarly, ingredients from the same cluster are more similar in structure and protein target. In summary, this thesis intends to build a bridge between the TCM system and modern medicinal systems using computational tools, including the machine learning model for meridian theory, network modelling for TCM formulae, as well as multipartite network analysis for herbal medicines and their ingredients. We demonstrated that applying novel computational approaches on the integrated high-throughput omics would provide insights for TCM and accelerate the novel drug discovery as well as repurposing from TCM. Perinteinen kiinalainen lääketiede (TCM) on ilmeinen tehokkuus taudin hoidoissa ja on arvokas lähde uuden lääkkeen löytämiseen. TCM: n farmakologisten vaikutusten taustalla oleva mekanismi pysyy kuitenkin tuntemattomassa, koska TCM on monimutkainen järjestelmä, jossa on useita yrttejä ja ainesosia, jotka tulevat yhteen reseptilääkkeeksi. Siksi on kiireellistä soveltaa Laskennallisia työkaluja TCM: lle ymmärtämään TCM-teorioiden taustalla oleva mekanismi molekyylitasolla ja käyttävät kehittyneitä verkkoalgoritmeja tutkimaan mahdollisia tehokkaita ainesosia ja havainnollistavat TCM: n periaatteita järjestelmän biologisissa näkökohdissa. Tässä opinnäytetyössä pyrimme ymmärtämään monimutkaisten TCM-järjestelmien toimintamekanismia molekyylitasolla bioinformaattilla ja laskennallisilla työkaluilla. Tutkimuksessa kehitettiin koneen oppimiskehystä yrttien ja ainesosien meridialaisista. Lopuksi saavutimme korkean tarkkuuden meridiaaneista yrtteistä ja ainesosista, mikä viittaa meridiaaneihin ja ainesosien ja yrtteihin liittyvien molekyylipiirin välillä, erityisesti koneen oppimismalleihin tärkeimmät ominaisuudet. Toiseksi ehdoimme uuden verkon lähestymistavan TCM-kaavojen tutkimiseksi kvantitoimisella vuorovaikutteisten yrttiparien vuorovaikutuksen tutkimuksessa ⅱ käyttämällä viisi verkkoetäisyyttä, mukaan lukien lähin, lyhyt, keskus, ydin sekä erottaminen. Osoitimme, että ylä-yrttiparien etäisyys on lyhyempi kuin satunnaisten yrttiparien, mikä viittaa voimakkaaseen vuorovaikutukseen ihmisellä vuorovaikutteisesti. Lisäksi Center-menetelmät ainesosan tasolla ylittivät muut menetelmät. Se vihjeitä meille, että keskeiset ainesosat ovat tärkeässä asemassa yrtteissä. Kolmanneksi tutkimme yrttien tai ainesosien välisiä yhdistyksiä ja niiden tärkeitä biologisia ominaisuuksia tutkimuksessa III, kuten ominaisuudet, meridiaanit, rakenteet tai tavoitteet klustereiden kautta moniparite-verkoston yhteisön analyysistä. Löysimme, että kasviperäiset lääkkeet samoilla klusterien keskuudessa ovat yleensä samankaltaisia ominaisuuksissa, meridiaaneissa. Samoin saman klusterin ainesosat ovat samankaltaisempia rakenteissa ja proteiinin tavoitteessa. Yhteenvetona tämä opinnäytetyö aikoo rakentaa silta TCM-järjestelmän ja nykyaikaisten lääkevalmisteiden välillä laskentatyökaluilla, mukaan lukien Meridian-teorian koneen oppimismalli, TCM-kaavojen verkkomallinnus sekä kasviperäiset lääkkeet ja niiden ainesosat Osoitimme, että uusien laskennallisten lähestymistapojen soveltaminen integroidulle korkean suorituskyvyttömiehille tarjosivat TCM: n näkemyksiä ja nopeuttaisivat romaanin huumeiden löytöä sekä toistuvat TCM: stä.
- Published
- 2021