1. Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis.
- Author
-
Biswal AK, Atmodjo MA, Li M, Baxter HL, Yoo CG, Pu Y, Lee YC, Mazarei M, Black IM, Zhang JY, Ramanna H, Bray AL, King ZR, LaFayette PR, Pattathil S, Donohoe BS, Mohanty SS, Ryno D, Yee K, Thompson OA, Rodriguez M Jr, Dumitrache A, Natzke J, Winkeler K, Collins C, Yang X, Tan L, Sykes RW, Gjersing EL, Ziebell A, Turner GB, Decker SR, Hahn MG, Davison BH, Udvardi MK, Mielenz JR, Davis MF, Nelson RS, Parrott WA, Ragauskas AJ, Neal Stewart C Jr, and Mohnen D
- Subjects
- Biomass, Boron metabolism, Calcium metabolism, Cell Wall enzymology, Cell Wall metabolism, Crops, Agricultural, Glucuronosyltransferase chemistry, Panicum enzymology, Panicum genetics, Pectins genetics, Plants, Genetically Modified enzymology, Plants, Genetically Modified genetics, Populus enzymology, Populus genetics, Sugars metabolism, Biofuels, Cell Wall genetics, Glucuronosyltransferase genetics, Pectins biosynthesis
- Abstract
Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.
- Published
- 2018
- Full Text
- View/download PDF