1. Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization
- Author
-
Ayako Oyane, Maki Nakamura, A. Joseph Nathanael, Moumita Mahanti, Hirofumi Miyaji, Kanako Shitomi, and Kenji Koga
- Subjects
Calcium Phosphates ,Materials science ,Surface Properties ,Biomedical Engineering ,02 engineering and technology ,Microbial Sensitivity Tests ,engineering.material ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Apatite ,Biomaterials ,chemistry.chemical_compound ,Fluorides ,stomatognathic system ,Coating ,Coated Materials, Biocompatible ,X-Ray Diffraction ,Dental disorder ,Biomimetics ,Nephelometry and Turbidimetry ,Apatites ,Octacalcium phosphate ,Molecular Biology ,Ions ,Lasers ,Tooth surface ,Adhesiveness ,Phosphorus ,General Medicine ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Anti-Bacterial Agents ,Durapatite ,chemistry ,Chemical engineering ,visual_art ,visual_art.visual_art_medium ,engineering ,Surface modification ,Calcium ,0210 nano-technology ,Fluoride ,Layer (electronics) ,Acids ,Tooth ,Biotechnology - Abstract
Surface functionalization of teeth with fluoride-incorporated apatite layers displays great potential in treatments and prevention of dental disorders. In this study, we used a sintered hydroxyapatite (sHA) substrate as a model material of teeth, and established a rapid and area-specific coating technique of fluoride-incorporated apatite layers by using a laser-assisted biomimetic (LAB) process. In this technique, a sHA substrate was irradiated on the surface with a Nd:YAG pulsed UV laser for 30 min in supersaturated calcium phosphate (CaP) solutions with various fluoride concentrations. The fluoride concentration in the CaP solution was varied to control morphology, crystalline structure, and fluoride content of the resulting layers. Without fluoride in the CaP solution, an octacalcium phosphate (OCP) layer with a flake-like structure was formed on the laser-irradiated surface of the substrate. The addition of fluoride (1000 µM and 3000 µM) to the CaP solution led to the formation of fluoride-incorporated apatite layers with an enamel-like needle-like nanostructure. The fluoride-incorporated apatite layers adhered firmly to the sHA surface and reduced acid dissolution of the sHA substrate by acting as a protective covering. Additionally, the layers released fluoride ions for more than 24 h, and exhibited antibacterial activity relative to a caries-causing bacterium, namely Streptococcus mutans. Thus, our LAB process can potentially act as a new tool for functionalization of tooth surfaces. Statement of Significance We used a sintered hydroxyapatite (sHA) substrate as a model material of teeth, and established a rapid and area-specific coating technique of fluoride-incorporated apatite layers on the sHA surface by using our laser-assisted biomimetic (LAB) process. In this process, pulsed laser was utilized to accelerate seeded crystal growth in supersaturated calcium phosphate solutions supplemented with NaF. The thus-fabricated fluoride-incorporated apatite layers consisted of enamel-like needle-like nanocrystals with c-axis orientation. These fluoride-incorporated apatite layers adhered firmly to the sHA surface, reduced acid dissolution of the sHA substrate by acting as a protective covering, and exhibited antibacterial activity against Streptococcus mutans through the fluoride release. Thus, our LAB process can potentially act as a new tool for functionalization of tooth surfaces.
- Published
- 2018