1. Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability
- Author
-
Robin M. Cywar, Nicholas A. Rorrer, Heather B. Mayes, Anjani K. Maurya, Christopher J. Tassone, Gregg T. Beckham, and Eugene Y.-X. Chen
- Subjects
Nylons ,Colloid and Surface Chemistry ,Lactams ,Caprolactam ,General Chemistry ,Biochemistry ,Pyrrolidinones ,Catalysis ,Polymerization - Abstract
Aliphatic polyamides, or nylons, are typically highly crystalline and thermally robust polymers used in high-performance applications. Nylon 6, a high-ceiling-temperature (HCT) polyamide from ε-caprolactam, lacks expedient chemical recyclability, while low-ceiling temperature (LCT) nylon 4 from pyrrolidone exhibits complete chemical recyclability, but it is thermally unstable and not melt-processable. Here, we introduce a hybrid nylon, nylon 4/6, based on a bicyclic lactam composed of both HCT ε-caprolactam and LCT pyrrolidone motifs in a hybridized offspring structure. Hybrid nylon 4/6 overcomes trade-offs in (de)polymerizability and performance properties of the parent nylons, exhibiting both excellent polymerization and facile depolymerization characteristics. This stereoregular polyamide forms nanocrystalline domains, allowing optical clarity and high thermal stability, however, without displaying a melting transition before decomposition. Of a series of statistical copolymers comprising nylon 4/6 and nylon 4, a 50/50 copolymer achieves the greatest synergy in both reactivity and polymer properties of each homopolymer, offering an amorphous nylon with favorable properties, including optical clarity, a high glass transition temperature, melt processability, and full chemical recyclability.
- Published
- 2022