1. Microperoxidase 8 catalysed nitrogen oxides formation from oxidation of N-hydroxyguanidines by hydrogen peroxide
- Author
-
Daniel Mansuy, Yann Henry, Jean-Pierre Mahy, Jean-Luc Boucher, Yves Frapart, Dominique Mandon, and Rémy Ricoux
- Subjects
0303 health sciences ,biology ,Oxidative phosphorylation ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,Nitric oxide ,Nitric oxide synthase ,03 medical and health sciences ,chemistry.chemical_compound ,Ultraviolet visible spectroscopy ,chemistry ,biology.protein ,Cyanamide ,Nitrite ,Hydrogen peroxide ,030304 developmental biology ,Peroxidase - Abstract
Nitric oxide (NO) is a potent intra- and intercellular messenger involved in the control of vascular tone, neuronal signalling and host response to infection. In mammals, NO is synthesized by oxidation of l-arginine catalysed by hemeproteins called NO-synthases with intermediate formation of Nω-hydroxy-l-arginine (NOHA). NOHA and some hydroxyguanidines have been shown to be able to deliver nitrogen oxides including NO in the presence of various oxidative systems. In this study, NOHA and a model compound, N-(4-chlorophenyl)-N′-hydroxyguanidine, were tested for their ability to generate NO in the presence of a haemprotein model, microperoxidase 8 (MP8), and hydrogen peroxide. Nitrite and nitrate production along with selective formation of 4-chlorophenylcyanamide was observed from incubations of N-(4-chlorophenyl)-N′-hydroxyguanidine in the presence of MP8 and hydrogen peroxide. In the case of NOHA, the corresponding cyanamide, Nδ-cyano-L-ornithine, was too unstable under the conditions used and l-citrulline was the only product identified. A NO-specific conversion of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide to 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl and formation of MP8–Fe–NO complexes were observed by EPR spectroscopy and low-temperature UV/visible spectroscopy, respectively. These results clearly demonstrate the formation of nitrogen oxides including NO from the oxidation of exogenous hydroxyguanidines by hydrogen peroxide in the presence of a minienzyme such as MP8. The importance of the bioactivation of endogenous (NOHA) or exogenous N-hydroxyguanidines by peroxidases of physiological interest remains to be established in vivo.
- Published
- 2002
- Full Text
- View/download PDF