1. Three on Three: Universal and High-Affinity Molecular Recognition of the Symmetric Homotrimeric Spike Protein of SARS-CoV-2 with a Symmetric Homotrimeric Aptamer
- Author
-
Jiuxing Li, Zijie Zhang, Jimmy Gu, Ryan Amini, Alexandria G. Mansfield, Jianrun Xia, Dawn White, Hannah D. Stacey, Jann C. Ang, Gurpreet Panesar, Alfredo Capretta, Carlos D. M. Filipe, Karen Mossman, Bruno J. Salena, Jonathan B. Gubbay, Cynthia Balion, Leyla Soleymani, Matthew S. Miller, Deborah Yamamura, John D. Brennan, and Yingfu Li
- Subjects
Colloid and Surface Chemistry ,SARS-CoV-2 ,Spike Glycoprotein, Coronavirus ,Oligonucleotides ,Humans ,COVID-19 ,Biological Assay ,General Chemistry ,Biochemistry ,Catalysis - Abstract
Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 10
- Published
- 2022
- Full Text
- View/download PDF