1. Statistical analysis of isocratic chromatographic data using Bayesian modeling
- Author
-
Agnieszka Kamedulska, Łukasz Kubik, and Paweł Wiczling
- Subjects
Water ,Bayes Theorem ,Biochemistry ,Chromatography, High Pressure Liquid ,Analytical Chemistry - Abstract
Chromatographic retention times are usually modeled considering only one analyte at a time. However, it has certain limitations as no information is shared between the analytes, and consequently the model predictions poorly generalize to out-of-sample analytes. In this work, a publicly available dataset was used to illustrate the benefits of pooling the individual data and analyzing them simultaneously utilizing Bayesian hierarchical approach. Statistical analysis was carried out using the Stan program coupled with R, which enables full Bayesian inference with Markov chain Monte Carlo sampling. This methodology allows (i) incorporating prior knowledge about the likely values of model parameters, (ii) considering the between-analyte variability and the correlation between the model parameters, (iii) explaining the between-analyte variability by available predictors, and (iv) sharing information across the analytes. The latter is especially valuable when only limited information is available in the data about certain model parameters. The results are obtained in the form of posterior probability distribution, which quantifies uncertainty about the model parameters and predictions. Posterior probability is also directly relevant for decision-making. In this work, we used the Neue model to describe the relationship between retention factor and acetonitrile content in the mobile phase for 1026 analytes. The model was parametrized in terms of retention factor in 100% water, retention factor in 100% acetonitrile, and curvature coefficient, and considered log P and pK
- Published
- 2021