1. Genomic analysis of multidrug-resistant Escherichia coli from Urban Environmental water sources in Accra, Ghana, Provides Insights into public health implications.
- Author
-
Tettey R, Egyir B, Tettey P, Arko-Mensah J, Addo SO, Owusu-Nyantakyi C, Boateng W, and Fobil J
- Subjects
- Ghana, Humans, Public Health, Anti-Bacterial Agents pharmacology, Water Microbiology, Microbial Sensitivity Tests, Genomics, Whole Genome Sequencing, Phylogeny, Sewage microbiology, Genome, Bacterial, Escherichia coli genetics, Escherichia coli drug effects, Escherichia coli isolation & purification, Drug Resistance, Multiple, Bacterial genetics, beta-Lactamases genetics, Wastewater microbiology
- Abstract
Wastewater discharge into the environment in resource-poor countries poses a threat to public health. Studies in this area within these countries are limited, and the use of high-throughput whole-genome sequencing technologies is lacking. Therefore, understanding of environmental impacts is inadequate. The present study investigated the antibiotic resistance profiles and diversity of beta-lactamases in Escherichia coli strains isolated from environmental water sources in Accra, Ghana. Microbiological analyses were conducted on wastewater samples from three hospitals, a sewage and wastewater treatment plant, and water samples from two urban surface water bodies. Confirmed isolates (N = 57) were selected for phenotypic antibiotic resistance profiles. Multi-drug-resistant isolates (n = 25) were genome sequenced using Illumina MiSeq sequencing technology and screened for sequence types, antibiotic resistance, virulence and beta-lactamase genes, and mobile genetic elements. Isolates were frequently resistant to ampicillin (63%), meropenem (47%), azithromycin (46%), and sulfamethoxazole-trimethoprim (42%). Twenty different sequence types (STs) were identified, including clinically relevant ones such as ST167 and ST21. Five isolates were assigned to novel STs: ST14531 (n = 2), ST14536, ST14537, and ST14538. The isolates belonged to phylogroups A (52%), B1 (44%), and B2 (4%) and carried β-lactamase (TEM-1B, TEM-1C, CTX-M-15, and blaDHA-1) and carbapenemase (OXA-1, OXA-181) resistance genes. Dominant plasmid replicons included Col440I (10.2%) and IncFIB (AP001918) (6.8%). Polluted urban environments in Accra are reservoirs for antibiotic-resistant bacteria, posing a substantial public health risk. The findings underscore the need for targeted public health interventions to mitigate the spread of antibiotic-resistant bacteria and protect public health., Competing Interests: I have read the journal’s policy and the authors of this manuscript have no competing interests., (Copyright: © 2024 Tettey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF