1. Divergent off-target effects of RSK N-terminal and C-terminal kinase inhibitors in cardiac myocytes.
- Author
-
Stathopoulou K, Schobesberger S, Bork NI, Sprenger JU, Perera RK, Sotoud H, Geertz B, David JP, Christ T, Nikolaev VO, and Cuello F
- Subjects
- Animals, Calcium-Binding Proteins metabolism, Cells, Cultured, Myocytes, Cardiac cytology, Phosphorylation, Rats, Rats, Wistar, Troponin I metabolism, Benzopyrans pharmacology, Monosaccharides pharmacology, Myocytes, Cardiac drug effects, Protein Kinase Inhibitors pharmacology, Pteridines pharmacology, Pyrimidines pharmacology, Pyrroles pharmacology, Ribosomal Protein S6 Kinases, 90-kDa antagonists & inhibitors
- Abstract
P90 ribosomal S6 kinases (RSK) are ubiquitously expressed and regulate responses to neurohumoral stimulation. To study the role of RSK signalling on cardiac myocyte function and protein phosphorylation, pharmacological RSK inhibitors were tested. Here, the ATP competitive N-terminal kinase domain-targeting compounds D1870 and SL0101 and the allosteric C-terminal kinase domain-targeting FMK were evaluated regarding their ability to modulate cardiac myocyte protein phosphorylation. Exposure to D1870 and SL0101 significantly enhanced phospholamban (PLN) Ser16 and cardiac troponin I (cTnI) Ser22/23 phosphorylation in response to D1870 and SL0101 upon exposure to phenylephrine (PE) that activates RSK. In contrast, FMK pretreatment significantly reduced phosphorylation of both proteins in response to PE. D1870-mediated enhancement of PLN Ser16 phosphorylation was also observed after exposure to isoprenaline or noradrenaline (NA) stimuli that do not activate RSK. Inhibition of β-adrenoceptors by atenolol or cAMP-dependent protein kinase (PKA) by H89 prevented the D1870-mediated increase in PLN phosphorylation, suggesting that PKA is the kinase responsible for the observed phosphorylation. Assessment of changes in cAMP formation by FRET measurements revealed increased cAMP formation in vicinity to PLN after exposure to D1870 and SL0101. D1870 inhibited phosphodiesterase activity similarly as established PDE inhibitors rolipram or 3-isobutyl-1-methylxanthine. Assessment of catecholamine-mediated force development in rat ventricular muscle strips revealed significantly reduced EC
50 for NA after D1870 pretreatment (DMSO/NA: 2.33 μmol/L vs. D1870/NA: 1.30 μmol/L). The data reveal enhanced cardiac protein phosphorylation by D1870 and SL0101 that was not detectable in response to FMK. This disparate effect might be attributed to off-target inhibition of PDEs with impact on muscle function as demonstrated for D1870., (Copyright © 2019 Elsevier Inc. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF